
Quasi-Succinct Indices
Sebastiano Vigna

Dipartimento di Informatica
Università degli Studi di Milano

Italia

Inverted Indices

• The backbone of search engines (and more)

• Main problem: store a sequence of increasing
integers in little space so to be able to pick the
i-th integer / skip to the first integer larger
than b in little time

• This is the classical rank/select problem

• For positions the problem is a bit more
articulated (and complicated)

The Classical Solution

• Middle 80s/start of 90s (apparently depends on
who you talk to)

• Turn the sequence x0, x1, x2, ... into gaps x0, x1 -
x0, x2 - x1,...

• Hope that the numbers will be small and well
(predictably) distributed

• Use some instantaneous code to store the
gaps

Lot Of Research

• Zillions of different codes and kinds of codes

• Problem: sequential decoding easy, rank and
selection very inefficient

• Solution: various kind of skip tables that make it
possible to “jump” in the middle of the gap
sequence

• In retrospective, it looks a little bit contrived,
doesn’t it?

Why Gaps?

• Maybe we can approach the problem in a
completely different way

• Maybe gaps were not a good idea in the first
place

• Maybe there are nice, efficient ways of store
sequences of integers that do not require gaps

• So, back (1975!) to the future (now)!

Elias-Fano Representation

• Elias developed in 1975 a quasi-succinct
representation for monotone sequences
(JACM); Fano discusses it in a report

• At that time, probably no more than a
curiosity

• (My 2€¢: should be taught in the first year of
any CS curriculum)

• We’re going to revive the idea

High Bits/Low Bits
• Given n and u we have a monotone sequence

0 ≤ x0, x1, x2, ... , xn–1 < u

• Store the lower ℓ= log(u / n) bits explicitly

• Store the upper bits as a sequence of unary
coded gaps (0k1 represents k)

• We use at most 2 + log(u / n) bits per element

• Close to the succinct bound: quasi-succinct!

• (Less than half a bit away, as Elias proves)

5 8 8 15 32

1 10 10 11 100001 00 00 11 00

01 00 00 11 00

1 2 2 3 8

01 01 1 01 000001

1 − 0 2 − 1 2 − 2 3 − 2 8 − 3

5, 8, 8, 15, 32 < u = 36, ℓ = 2

Why Is This Any Good?
• Almost optimal space usage

• Distribution-free

• Reading sequentially requires very few logical
operations (you might be surprised)

• Restrict the rank/selection problem to a nice
~2n bits array with half zeroes, half ones

• It’s beautiful :-)

• So, what about rank/select?

Looking up (Selection)

• Suppose you want to get the k-th element
quickly

• Just scan the upper bits, one word at a time,
doing population counting (one clock)

• Cost of searching: 100ps/element (yes, that’s
picoseconds) per element on an i7 @ 3.4GHz

• When you get to the right word, complete
sequentially and pick the lower bits

Searching (Ranking)

• It’s exactly the same: only, you count zeroes

• Zeroes tells you how much the upper bits are
increasing, which is the important thing

• Just skip b >> ℓ upper zeroes and complete
sequentially

• Due to the balance between ones and zeroes,
on average always 100ps per element (this
must be made more precise, see the paper)

“Complete Sequentially”?
• Not really

• There are broadword algorithms for selection (I wrote the first
one in 2007; improved later by Simon Gog)

• Fixed number of operations to skip k unary codes

• Final phase at ~500ps/element

int select_in_word(const uint64_t x, const int k) {
 uint64_t byte_sums = x - ((x & 0xaaaaaaaaaaaaaaaaULL) >> 1);
 byte_sums = (byte_sums & 0x3333333333333333ULL) + ((byte_sums >> 2)

 & 0x3333333333333333ULL);
 byte_sums = (byte_sums + (byte_sums >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
 byte_sums *= 0x0101010101010101ULL;
 const uint64_t k_step_8 = k * 0x0101010101010101ULL;
 const int place = ((((k_step_8 | 0x8080808080808080ULL) - byte_sums)

& 0x8080808080808080ULL) >> 7) * 0x0101010101010101ULL >> 53 & ~0x7;
 return place + select_in_byte[x >> place & 0xFF |

k - ((byte_sums << 8) >> place & 0xFF) << 8];
}

Not Fast enough?
• Fix a quantum q (I use 256)

• Store in a table the position of each q-th zero,
or q-th one

• Go there in constant time and search from
there

• On average, again constant time because of the
balance between zeroes and ones

• Extreme locality: one memory access per skip

0 1 0 1 1 0 1 0 0 0 0 0 1 01 00 00 11 00

0 1 2 3 4 5 6 7 8 9 10 11 12 13

• 5, 8, 8, 15, 32 ≤ u = 36, ℓ = 2

• We to skip to 22, so we skip 22 >> ℓ = 5 zeroes

• We getting to position 9, so we are in the middle of the unary
code associated with the element of index 9 - 5 = 4

• A unary-code read (the dashed arrow) returns 3

• We now know that the upper bits of the current element (of
index 4) are 3 + 5 = 8

• Since the block of lower bits of index 4 is zero, we return 32

• If we have skip pointers with q=4, we can start from the dotted
arrow

Enough of Fun with Bits

• We want to store an inverted index

• There are document pointers, counts and
positions

• For pointers we obviously use a quasi-succinct
list with skips

• Counts? Positions?

• Important: we can store strictly monotone
sequences quasi-succinctly by storing xi - i !

Using Duality Perversely

• Instead of storing counts c0, c1, c2, ... , we store
their prefix sums (a.k.a. cumulative function) c0, c0

+ c1, c0 + c1 + c2, ...

• Instead of storing positions, we store the prefix
sums of their gaps

• Main combinatorial idea (probably, the only
actual idea in the paper): the prefix sum of
counts is the indexing function for positions

Fast & Compact
• Decoding speed faster than other approaches

(but not for counts!)

• Compression definitely better than other
approaches, even for the smallest lists, except
for very slow stuff like Golomb

• Locality of access definitely better than other
appoaches

• Scalability (in theory and practice) better than
other approaches

What Now?
• Let’s improve this, e.g., better implementations

• There’s decades of engineering and optimization on gaps,
nothing on this, yet it is faster and compresses better!

• Beautiful code by Philip Pronin (Facebook) on GitHub:

 int64_t get_next_upper_bits() {
 while(word == 0) word = upper_bits[++curr];
 const int64_t upper_bits = curr * 64 +

 __builtin_ctzll(word) - index++;
 word &= word - 1;
 return upper_bits;
 }

Recent news

• Best paper at SIGIR 2014: Giuseppe Ottaviano
and Rossano Venturini for “Partitioned Elias–Fano
indexes”.

• They break optimally a list into a small number of
chunks so that each chunk compresses better

• Makes Elias–Fano somewhat “distribution-aware”

Try It!

• On MG4J: http://mg4j.di.unimi.it/

• Facebook: https://github.com/facebook/folly/

• You might find your own application

• WebGraph has an EFGraph implementation

• Questions?

http://mg4j.di.unimi.it
https://github.com/facebook/folly/blob/master/folly/experimental/EliasFanoCoding.h
http://mg4j.di.unimi.it
https://github.com/facebook/folly/blob/master/folly/experimental/EliasFanoCoding.h

