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Abstract It is known that computations of anonymous networks can be reduced
to the construction of a certain graph, the minimum base of the network. The
crucial step of this construction is the inference of the minimum base from a
finite tree that each processor can build (its truncated view). We isolate those
trees that make this inference possible, and call them holographic. Intuitively,
a tree is holographic if it is enough self-similar to be uniquely extendible to an
infinite tree. This possibility depends on a size function for the class of graphs
under examination, which we call a holographic bound for the class. Holographic
bounds give immediately, for instance, bounds for the quiescence time of self-
stabilizing protocols. In this paper we give weakly tight holographic bounds for
some classes of graphs.

1 Introduction

This paper investigates combinatorial properties of trees and graphs whose very defi-
nition has been inspired by some problems in the study of distributed anonymous and
self-stabilizing (synchronous) computations. In particular, we shall define and study
holographic trees and holographic bounds, which turn out to play a major rôle in the
construction of distributed anonymous algorithms and self-stabilizing protocols.

The reader might be easily bewildered by the amount of notions that must be ab-
sorbed to grasp the concepts above, and by the appearent opaqueness of Definition 2
and 3. Indeed, some knowledge of anonymous computations and theory of graph fibra-
tions is necessary to understand them completely. Thus, the rest of this introduction is
devoted to presenting a “historical” reconstruction of the notion of holographic tree and
holographic bound, so to place these concepts in a computational perspective.

Consider a network of processors, represented by a strongly connected graph 1. We
assume that the network is anonymous [1, 13, 2], that is, all processors start from the
same initial state and apply the same algorithm. The network is synchronous, in the
sense that all processors take a step at the same time, and the new state of a processor
depends on its own state and on the states of its in-neighbours.

One of the main concerns in the theory of anonymous computation is to establish
which problems can be solved on a network2. This apparently gigantic task was enor-
mously simplified by the discovery that the state of a processor after the k-th step of any
∗ The authors have been partially supported by the Italian MURST (Finanziamento di iniziative

di ricerca “diffusa” condotte da parte di giovani ricercatori).
1 Our graphs are directed, and may possess multiple arcs and loops—see Sect. 2.
2 Or on a class of networks, that is, using an algorithm that will work for every network out of

the class. The class is used to represent the knowledge processors possess about the network.



anonymous computation depends only on a finite tree, which is the truncation at depth
k of an infinite tree, the view of the processor. In the bidirectional case, Yamashita and
Kameda [13], inspired by the seminal work of Angluin[1], showed that views corre-
spond to a standard graph-theoretic construction, the universal cover. Subsequently, it
was shown [3] that in the general case views are the universal total graphs (in the sense
of the theory of graph fibrations [7]) of the processors.

Let G be a network and i a processor of G. The view of G at i , denoted by G̃i , has
the (finite) paths of G ending into i as nodes (the root of G̃i being the empty path), with
an arc from node π to node π ′ if π is obtained by adding an arc at the beginning of π ′.
(The reader may want to consult Fig. 2 to see an example of a view.)

It is not difficult to become convinced that each processor can anonymously build
its own view truncated at any desired depth: at step k each processor gathers the view
truncated at depth k from each of its in-neighbours, and it is thus able to build its own
view truncated at depth k + 1. An example of the first steps of this algorithm is given
(for the network of Fig. 2) in Table 1 (for the time being, just ignore the last column).

The goal of each processor would be (in a perfect world) the computation of G and
of the node of G that corresponds to the processor itself. However, this is in general
impossible, since many processors can possess the same view, and thus cannot reach
different states, no matter which algorithm they use. A more feasible goal, which can
be indeed achieved, is the computation of the minimum base of the network, which is
essentially3 obtained by collapsing those processors that have the same view. (Again, an
example can be found in Fig. 2.) Indeed, every anonymous computation can be factored
into the computation of the minimum base followed by a local computation 4 [6].

The fundamental question we have to answer to is now: How deep must a truncation
of the view be for the correct computation of the minimum base? In other words: How
long must the algorithm sketched above run to compute a correct result?

The first answers were given originally by Yamashita and Kameda: if a bound N
on the number of processors of the network is known, N 2 steps suffice. Subsequently,
using a result of Norris [12], the bound was improved to 2N − 1, and eventually to
N + D (where D is an upper bound on the diameter) in [3].

Once the minimum base B has been computed on the basis of a certain truncated
view T , one notes that T is a prefix5 of a unique view of B. In fact, this infinite tree
is the view of one or more processors of the network (among which the processor that
computed T ).

In other words, we can produce an infinite extension of T , in a way that respects the
internal similarities of T , and this infinite extension is entirely described by a graph (the
minimum base) with a selected node. With a bit of imagination, we shall call a tree for
which this operation is possible (preserving some uniqueness properties) holographic,
since, as in a hologram, it is a small piece that contains all the information of a much
larger (indeed, infinite) picture. For instance, it is reasonable to think that sufficiently

3 A more precise definition, which requires the introduction of graph fibrations, is given in
Sect. 3.

4 As long as a bound on the network size is known; if no bound on the size is known, this is not
possible, and a completely different approach is necessary (see, e.g., [5]).

5 For a formal definition of tree prefix, see Sect. 2.



deep truncated views will always be holographic. And this is indeed the reason why
anonymous computations work: the bounds quoted above quantify (rather roughly, as
we shall see) the depth after which a tree becomes holographic—in our terminology,
they are holographic bounds.

Of course, holographic bounds depend on the class of networks under examination.
If the class is small, very few levels (even just one, as shown in an example) will suffice
to identify the minimum base. Large classes, instead, will require more information,
and thus more levels (see, e.g., the lower bounds given in Sect. 4).

We now must admit that we partially lied to our reader: even if holographic bounds
do provide upper bounds on the runs of anonymous computation, their real applica-
tion lies in the domain of self-stabilization. A system is self-stabilizing if, for every
initial state, after a finite number of steps it cannot deviate from a specified behaviour.
Self-stabilization of distributed systems was introduced by Dijkstra in his celebrated pa-
per [11], and has since become an important framework for the study of fault-tolerant
computations.

In [4, 8] we showed the existence of a self-stabilizing protocol that computes the
truncated view; essentially, after D +1 steps all processors possess a truncation of their
view at least D + 1 levels deep, no matter which the initial state was. Similarly to the
anonymous case, this allows self-stabilization to arbitrary behaviours (for which a pro-
tocol exists) which depend only on the minimum base; thus, the quiescence time (i.e.,
the number of steps after which the desired behaviour starts) will depend on the num-
ber of levels required to compute the minimum base correctly—again, on a holographic
bound for the class of networks under examination.

In this paper we show that the function assigning to a graph G the size n Ĝ + DĜ ,

where Ĝ is the minimum base of G, is a holographic bound for the class of all strongly
connected graphs, and that this bound is weakly tight (there are infinite graphs for which
the size must be at least nĜ + DĜ ). We also show that the bound drops to DG + 1 if
the nodes are labelled injectively (i.e., in the network interpretation, if processors have
unique identifiers). Also in this case, we provide matching lower bounds.

2 Graph-theoretical Definitions

A (directed) (multi)graph G is given by a nonempty set N G = {1, 2, . . . , nG } of nodes
and a set AG of arcs, and by two functions sG , tG : AG → NG that specify the source
and the target of each arc. A (arc- and node-)coloured graph (with set of colours C) is
a graph endowed with a colouring function γ : N G + AG → C (the symbol + denotes

the disjoint union). We write i
a

→ j when the arc a has source i and target j , and i → j

when i
a

→ j for some a ∈ AG . We denote with DG the diameter of G. Subscripts will
be dropped whenever no confusion is possible.

A (in-directed) tree is a graph6 with a selected node, the root, such that every node
has exactly one directed path to the root. If T is a tree, we write h(T ) for its height (the
length of the longest directed path). In every tree we consider in this paper, all maximal

6 Since we need to manage infinite trees too, we allow the node set of a tree to be N.



paths have length equal to the height. We write T
�
k for the tree T truncated at height

k, that is, we eliminate all nodes at distance greater than k from the root.
Trees are partially ordered7 by prefix, that is, T ≤ U iff T ∼= U

�
h(T ); this partial

order is augmented with a bottom element ⊥, with h(⊥) = −1 by definition (so h
is strictly monotonic). The infimum in this partial order, denoted by ∧, is the tallest
common prefix (or ⊥ if no common prefix exists). The supremum between T and U
exists iff T and U are comparable.

3 Graph Fibrations

In this paper we exploit the notion of graph fibration [7]. A fibration, which is essen-
tially a local in-isomorphism, formalizes the idea that processors that are connected by
arcs with the same colours to processors behaving in the same way (with respect to the
colours) will behave alike. In this section we gather (without proof) a number of defi-
nitions and results about graph fibrations; although some of the statements are true for
all graphs, for sake of simplicity we shall assume that all graphs (except for trees) are
strongly connected.

Recall that a graph morphism f : G → H is given by a pair of functions f N :

NG → NH and f A : AG → AH that commute with the source and target functions,
that is, sH B f A = fN B sG and tH B f A = fN B tG . (The subscripts will usually be
dropped.) In other words, a morphism maps nodes to nodes and arcs to arcs in such a
way to preserve the incidence relation. Colours on nodes and arcs must be preserved
too.

Definition 1. A fibration8 between (coloured) graphs G and B is a morphism ϕ : G →

B such that for each arc a ∈ A B and for each node i ∈ NG satisfying ϕ(i) = t (a) there
is a unique arc ã i ∈ AG (called the lifting of a at i ) such that ϕ(̃a i) = a and t (̃a i ) = i .

We recall some topological terminology. If ϕ : G → B is a fibration, G is called the
total graph and B the base of ϕ. We shall also say that G is fibred (over B). The fibre
over a node i ∈ NB is the set of nodes of G that are mapped to i , and will be denoted
by ϕ−1(i).

In Fig. 1 we sketched a fibration between two graphs. Note that, because of the
lifting property described in Definition 1, all black nodes have exactly two incoming
arcs, one (the dotted arc) going out of a white node, and one (the continuous arc) going
out of a grey node. In other words, the in-neighbour structure of all black nodes is the
same.

There is a very intuitive characterization of fibrations based on the concept of local
isomorphism. A fibration ϕ : G → B induces an equivalence relation between the
nodes of G, whose classes are precisely the fibres of ϕ. When two nodes i and j are
equivalent (i.e., they are in the same fibre), there is a bijective correspondence between

7 We are in fact considering trees up to isomorphism (technically ≤ is just a preorder).
8 The name “fibration” comes from the categorical and homotopical tradition; indeed, our ele-

mentary definition is simply a restatement of the condition that ϕ : G → B induces a functor
that is a fibration [9] between the free categories generated by G and B.



fibre

a

t (a)

ϕ

B

G
iãi

Figure1. A fibration.

arcs coming into i and arcs coming into j that preserves colours, and such that the
sources of any two corresponding arcs are equivalent.

Let now G be a graph and i a node of G. We define an in-directed rooted coloured
tree G̃i as follows:

– the nodes of G̃i are the (finite) paths of G ending in i , the root of G̃i being the
empty path; each node is given the same colour as the starting node of the path;

– there is an arc from the node π to the node π ′ if π is obtained by adding an arc a
at the beginning of π ′ (the arc will have the same colour as a).

The tree G̃i (which is always infinite if G is strongly connected and with at least one
arc) is called the universal total graph of G at i , or, following Yamashita and Kameda,
the view of i . We can define a graph morphism υ i

G from G̃i to G, by mapping each node
π of G̃i (i.e., each path of G ending in i ) to its starting node, and each arc of G̃i to the
corresponding arc of G. The following important property holds:

Lemma 1. For every node i of a graph G, the morphism υ i
G : G̃i → G is a fibration,

called the universal fibration of G at i .

The view at i is a tree representing intuitively “everything processor i can learn from
interaction with its neighbours in an anonymous computation”; it plays in the general
case the same rôle as the universal covering in the undirected case [13]. As we remarked
in the introduction, it is not difficult to see that each processor can anonymously build its
own view truncated at any desired depth (and k steps are needed to obtain k levels). Note
that views of finite (strongly connected) graphs are exactly the regular trees without
leaves, in the sense of Courcelle [10].

Consider now a graph B such that every fibration with total graph B is an isomor-
phism. Such a graph is called fibration prime: intuitively, fibration prime graphs cannot
be “collapsed” by a fibration. It is worth observing that they are node rigid (i.e., all
automorphisms act on the nodes as the identity), so, in particular, if B and B ′ are iso-
morphic and fibration prime then all isomorphisms B → B ′ coincide on the nodes. We
have the following



Lemma 2. Let ϕ : G → B and ϕ ′ : G → B ′ be fibrations, with B and B ′ fibration
prime. Then B ∼= B ′.

In other words, to each graph G we can associate a fibration prime graph Ĝ, the min-
imum base of G, and a minimal fibration µG : G → Ĝ (in fact, there are several
candidates for µG , but they are all defined in the same way on the nodes, and in this
paper we shall use only the node component of minimal fibrations). In Fig. 2, we illus-
trate these notions by showing a graph G, its minimum base Ĝ and one of its views,
G̃1. (The numbers shown on G are actual node names, and not colours; the numberings
on Ĝ and G̃1 illustrate µG and υ1

G .) There are three important comments to be made
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Figure2. A graph, its minimum base and a view.

about Ĝ:

– fibration prime graphs (in particular, Ĝ) have distinct views (i.e., B̃ i ∼= B̃ j iff
i = j);

– Ĝ can be constructed by identifying isomorphic subtrees of G̃i (the choice of i ∈

NG is irrelevant), and µG maps node i to the equivalence class containing G̃i ;

– G̃i ∼=
˜̂G
µG (i)

, so we can compute µG(i) by searching for the node of Ĝ having G̃i

as view.

The fundamental fact we shall use intensively in all proofs is that the above considera-
tions, which involve infinite objects, can be described by means of finite entities using
the theorems of Sect. 5.

4 Holographic Bounds

Armed with our basic definitions, we now introduce the main concept we shall deal
with. Our interest is in isolating those trees that are enough coherent, and contain
enough information, to “replicate” themselves ad infinitum.



Definition 2. Let C be a class of graphs. A size function for C is a map ν : C → N.
Given a class C , a size function ν and a finite tree T we define

UC ,ν (T ) =
{
〈Ĥ , µH ( j)〉

∣∣ H ∈ C , j ∈ NH , ν(H ) ≤ h(T ) and T ≤ H̃ j }.

We say that T is (〈C , ν〉-)holographic iff UC ,ν (T ) is nonempty, and for every 〈B, i〉, 〈B ′, i ′〉 ∈

UC ,ν (T ) there is an isomorphism α : B → B ′ such that α(i) = i ′ (we shall often state
this condition by saying that UC ,ν (T ) contains essentially one element).

The idea behind the definition above is that the set UC ,ν (T ) contains all the possible
candidates for the pointed minimum bases of the graph (network) that generated T . The
height of T is also used to confine the search to those graphs whose size is not too large.
A holographic tree is a tree that is sufficiently self-similar to identify a single candidate
(up to isomorphism).

Definition 3. We say that ν is a holographic bound for C if for all G ∈ C , all i ∈ NG

and all k ≥ ν(G) we have that G̃i �
k is 〈C , ν〉-holographic.

Note that the set UC ,ν

(
G̃i �

k
)

is always nonempty, as it contains 〈Ĝ, µG(i)〉. A small
holographic bound makes holographic more trees, as it lowers the height required by
Definition 3, and moreover reduces the number of candidates; thus, given a class of
graphs one is interested in finding out a small holographic bound. Indeed, such a bound
provides also an upper bound on the quiescence time of self-stabilizing protocols [4, 8]
(or on the running time of anonymous algorithms) for the class under consideration.

As an example, in Table 1 we display the first steps of the execution of the standard
view construction algorithm on the network of Fig. 2, where T i is G̃i �

t , that is, the tree
constructed by processor i at time t . The last column gives, at each step, the content of
UG ,ν (T2) (with ν(G) = nĜ + DĜ , and G the class of all strongly connected graphs).
The reader may notice that the second processor “changes his mind” a few times about
Ĝ, but ultimately its guess is correct.

We now prove a very general and intuitive property of holographic bounds: a holo-
graphic bound for C works for every subclass of C , and moreover size functions point-
wise larger than a holographic bound are still holographic bounds. Formally,

Theorem 1. Let ν be a holographic bound for a class C . Then every size function
ν′ ≥ ν is a holographic bound for every class C ′ ⊆ C .

Proof. Let G be a graph of C , i a node of G and k ≥ ν ′(G). We have to prove that
UC ′,ν ′

(
G̃i �

k
)

contains essentially one element. But since, as it is immediate to check
from Definition 2,

UC ′,ν ′ (T ) ⊆ UC ,ν (T ) ,

and the right-hand set contains essentially one element when T = G̃i �
k, we have the

thesis. ut

5 A Holographic Bound for All Graphs

In this section we provide a holographic bound for the class of all (strongly connected)
graphs (note that by assuming |C| = 1, the bound applies also to noncoloured graphs).



t T1 T2 T3 T4 UG ,ν (T2)

0 �

1

2 �

3

4 �

5

Table1. The first steps of the view construction algorithm on the network G of Fig. 2.

The bound is based on a number of graph-theoretical results, which show that suffi-
ciently deep truncations of views characterize the (minimum bases of the) graph that
generated them. First of all, we recall a result of Norris [12]:

Theorem 2. G̃i ∼= G̃ j iff h
(
G̃i ∧ G̃ j

)
≥ n − 1.

Using the previous theorem, we prove the following

Theorem 3. Let G be a strongly connected graph and B a fibration prime graph with
minimum number of nodes satisfying h

(
G̃i ∧ B̃ j

)
≥ nG + DG for some i ∈ NG and

j ∈ NB : then there is a (minimal) fibration ϕ : G → B such that ϕ(i) = j ; in
particular, B ∼= Ĝ.

Proof. Note that B has at most n nodes, because the minimum base of G satisfies
the hypotheses. We shall build a morphism ϕ : G → B by sending a node l of G
to the unique node ϕ(l) of B satisfying G̃l �

(n − 1) ∼= B̃ϕ(l)
�
(n − 1). This node

can be found as follows: there is certainly a node l ′ ∈ (υ i
G)

−1(l) which is at depth
D at most. Thus, the subtree under l ′ in G̃i �

n + D has height at least n − 1. Let
ψ : G̃i �

(n + D) → B̃ j �
(n + D) be the isomorphism above. Then ϕ(l) = (υ

j
B Bψ)(l ′).

Note that the choice of l ′ is irrelevant, by the considerations about the views of fibration
prime graphs made in Sect. 3.

We now define analogously ϕ on the arcs, by using the lifting property. Let a be
an arc of G. We choose, as before, l ∈ (υ i

G)
−1(t (a)) which is at depth D at most, and

consider the lifting ã l . Then we set ϕ(a) = (υ
j
B B ψ)(̃al). Note that this is compatible

with our definition on the nodes, because s (̃a l) is at depth D + 1 at most, and thus its
image through υ j

B Bψ must be ϕ(s(a)), by Theorem 2. It is then easy to check that since



ϕ has been defined by a lifting and composition with isomorphisms and fibrations, it is
itself a fibration. Moreover, by its very definition it maps i to j . ut

Corollary 1. Let B1 and B2 be fibration prime, i1 a node of B1 and i2 a node of B2. If

h
(
B̃1

i1 ∧ B̃2
i2
)

≥ max{n B1 + DB1, nB2 + DB2 }

then there is an isomorphism α : B1 → B2 such that α(i1) = i2.

The previous result shows that fibration prime graphs sharing enough levels of one
of their views are isomorphic (and the nodes to which the view are associated are in
correspondence). This is all we need to prove our first holographic bound:

Theorem 4. The function mapping a graph G to n Ĝ + DĜ is a holographic bound for
the class of all graphs (hence for every class).

Proof. By definition, we have to show that for every graph G, every node i of G and
every k ≥ n Ĝ + DĜ the class

{
〈Ĥ , µH ( j)〉

∣∣ j ∈ NH , n Ĥ + DĤ ≤ k and G̃i �
k ≤ H̃ j }

contains essentially one element. To this purpose, we take an arbitrary pair 〈B, l〉 from
the set and show how to build an isomorphism between Ĝ and B that maps µG(i) to l.
But since G̃i �

k ≤ B̃ l and k ≥ max
{

nB + DB , nĜ + DĜ

}
, we can apply Corollary 1

to Ĝ and B, with chosen nodes µG(i) and l (recall that G̃i ∼=
˜̂G
µG(i)

). ut

An example of trees that are holographic using the bound above is given in Table 2,
where we show all the (uncoloured) trees of height at most four and indegree at most
two that are holographic, together with the base and the node that generated them. One
should compare this list with some of the nonholographic trees appearing in the execu-
tion of the view construction algorithm in Table 1. The reader might now be curious to
know whether n Ĝ + DĜ is the best possible holographic bound. We do not know the
answer to this question, but we have some partial results. Let C be any class of graph
including the fibration prime graphs shown in Fig. 3. Note that both G n,D and Hn,D

have n nodes and diameter D (the difference between the two families is given by the
positioning of the dotted arc). It is tedious but easy to check that for all D and n we

have that �Gn,D
1

and �Hn,D
1

are isomorphic up to level n + D − 1, but not up to level
n + D, and this property is the key to the proof of the following lower bounds:

Theorem 5. Every holographic bound for a class C as above is at least n Ĝ + DĜ for
an infinite number of graphs.

Proof. By contradiction, suppose that ν(G) ≥ n Ĝ + DĜ holds only for finitely many
G ∈ C . Thus, there are n and D such that ν(G n,D), ν(Hn,D) < n + D. But then

UC ,ν

(
�Gn,D

1 �
n + D − 1

)
contains both 〈Gn,D, 1〉 and 〈Hn,D, 1〉, a contradiction.

ut



T 〈H, i〉

Table2. Small holographic trees.

Theorem 6. A class C as above has no holographic bound depending only on the
number of nodes and on the diameter (or on the number of nodes and on the diameter
of the minimum base) that is smaller than n Ĝ + DĜ for some G ∈ C .

Proof. Let L ∈ C be a graph with n nodes and diameter D such that ν(L) < n L̂ + DL̂ ;
in the first case, ν(Gn,D) = ν(Hn,D) = ν(L) < n L̂ + DL̂ ≤ n + D, and we proceed
as in the proof of Theorem 5. In the second case, we have ν

(
Gn L̂ ,DL̂

)
= ν

(
Hn L̂ ,DL̂

)
=

ν(L) < n L̂ + DL̂ , and the thesis follows again. ut

In the rest of the section, we highlight two worked out examples specializing Theo-
rem 4.

Inregular graphs. Since the inregular graphs are exactly the total graphs over bouquets
(i.e., graphs with exactly one node), we have that the constant function 1 is the (obvi-
ously minimum) holographic bound for that class, and the holographic trees are exactly
the inregular trees with at least one arc.

Complete multipartite graphs. A graph is complete multipartite iff its node set can be
partitioned into independent9 sets, and there is exactly one arc from node i to node
j when i and j do not belong to the same part. The minimum base of a complete
multipartite graph G can be constructed as follows: let k 1, k2,. . . , klG be a list (without
repetitions) of the cardinalities of the parts of G, and m 1, m2,. . . , m lG be the respective
multiplicities (i.e., m i is the number of parts of cardinality k i ). The graph Ĝ has lG

9 A set of nodes is independent iff there are no arcs with source and target in the set.
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Figure3. Graphs with similar views.

nodes, and the number of arcs from node i to node j is m i ki if i 6= j , (m i − 1)ki

otherwise. As a consequence, a holographic bound for this class is given by ν(G) =

lG + 1.

6 A Holographic Bound for All Labelled Graphs

In this section we prove that DG + 1 is a holographic bound for the class L of labelled
graphs, that is, graphs whose nodes are coloured injectively. All such graphs are obvi-
ously fibration prime. Note that the theory described in Sect. 3 specializes, and that also
views carry on the colouring (which however is no longer injective). First, we show that
Theorem 3 can be restated as follows:

Theorem 7. Let G and B be labelled graphs, and suppose h
(
G̃i ∧ B̃ j

)
≥ DG + 1 for

some i ∈ NG and j ∈ NB : then there is an isomorphism α : G ∼= B, and α(i ) = j .



Proof. We define α by sending a node of G to the unique node of B having the same
colour, and on the arcs by lifting. More in detail, let a be an arc of G. We choose a
l ∈ (υ i

G)
−1(t (a)) which is at depth D at most, and consider the lifting ã l . Then we set

α(a) = (υ
j
B B ψ)(̃al), where ψ is the isomorphism from G̃i �

DG + 1 to B̃ j �
DG + 1.

Note that this is compatible with our definition on the nodes, because s (̃a l) is at depth
D + 1 at most, and thus its image through υ j

B B ψ must have the same colour as s(a).
It is then easy to check that since α has been defined by a lifting and composition
with isomorphisms and fibrations, it is itself a fibration, and thus an isomorphism by
primality of G and B. Moreover, by its very definition it maps i to j . ut

Theorem 8. The function mapping a graph G to D G + 1 is a holographic bound for
the class of all labelled graphs (hence for every class of labelled graphs).

Proof. By definition, we have to show that for every labelled graph G, every node i of
G and every k ≥ DG + 1 the class

{
〈H, j〉

∣∣ H is labelled, j ∈ NH , DH + 1 ≤ k and G̃i �
k ≤ H̃ j }

contains essentially one element (we omitted the hat symbols as all labelled graphs are
fibration prime). But if 〈H, j〉 is an arbitrary element from the set, we have h

(
G̃i ∧

H̃ j
)

≥ k ≥ DG + 1, and by Theorem 7 we obtain the thesis. ut

Finally, as in the previous section, we prove some lower bounds:

Theorem 9. Every holographic bound ν for L is at least D + 1 for an infinite number
of graphs.

Proof. Suppose ν(G) < DG + 1, and consider nodes i and j of G which maximize the
distance from j to i . Let H be the graph obtained from G by adding an additional loop
at j . Clearly UL ,ν

(
G̃i �

DG
)

would contain 〈H, i〉, unless ν(H ) ≥ DG +1 = DH +1.
This gives immediately the result. ut

An absolutely analogous proof shows also that

Theorem 10. The class L has no holographic bound depending only on the diameter
that is smaller than DG + 1 for some G ∈ L .

References

[1] Dana Angluin. Local and global properties in networks of processors. In Proc. 12th Sym-
posium on the Theory of Computing, pages 82–93, 1980.

[2] Paolo Boldi, Bruno Codenotti, Peter Gemmell, Shella Shammah, Janos Simon, and Sebas-
tiano Vigna. Symmetry breaking in anonymous networks: Characterizations. In Proc. 4th
Israeli Symposium on Theory of Computing and Systems, pages 16–26. IEEE Press, 1996.

[3] Paolo Boldi and Sebastiano Vigna. Computing vector functions on anonymous networks. In
Danny Krizanc and Peter Widmayer, editors, SIROCCO ’97. Proc. 4th International Collo-
quium on Structural Information and Communication Complexity, volume 1 of Proceedings
in Informatics, pages 201–214. Carleton Scientific, 1997. An extended abstract appeared
also as a Brief Announcement in Proc. PODC ’97, ACM Press.



[4] Paolo Boldi and Sebastiano Vigna. Self-stabilizing universal algorithms. In Sukumar
Ghosh and Ted Herman, editors, Self–Stabilizing Systems (Proc. of the 3rd Workshop on
Self–Stabilizing Systems, Santa Barbara, California, 1997), volume 7 of International In-
formatics Series, pages 141–156. Carleton University Press, 1997.

[5] Paolo Boldi and Sebastiano Vigna. Computing anonymously with arbitrary knowledge. In
Proc. 18th ACM Symposium on Principles of Distributed Computing, pages 181–188. ACM
Press, 1999.

[6] Paolo Boldi and Sebastiano Vigna. An effective characterization of computability in anony-
mous networks. In Jennifer L. Welch, editor, Distributed Computing. 15th International
Conference, DISC 2001, number 2180 in Lecture Notes in Computer Science, pages 33–47.
Springer–Verlag, 2001.

[7] Paolo Boldi and Sebastiano Vigna. Fibrations of graphs. Discrete Math., 243:21–66, 2002.
[8] Paolo Boldi and Sebastiano Vigna. Universal dynamic synchronous self-stabilization. Distr.

Comput., 15, 2002.
[9] Francis Borceux. Handbook of Categorical Algebra 2, volume 51 of Encyclopedia of Math-

ematics and Its Applications. Cambridge University Press, 1994.
[10] Bruno Courcelle. Fundamental properties of infinite trees. Theoret. Comput. Sci., 25(2):95–

169, 1983.
[11] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. CACM,

17(11):643–644, 1974.
[12] Nancy Norris. Universal covers of graphs: Isomorphism to depth n−1 implies isomorphism

to all depths. Discrete Appl. Math., 56:61–74, 1995.
[13] Masafumi Yamashita and Tiko Kameda. Computing on anonymous networks: Part I—

characterizing the solvable cases. IEEE Trans. Parallel and Distributed Systems, 7(1):69–
89, 1996.


