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Abstract

Since the seminal work of Litvak and van der Hofstad [LvdH13], it has been known that New-
man’s assortativity [New02, New03], being based on Pearson’s correlation, is subject to a perni-
cious size effect which makes large networks with heavy-tailed degree distributions always unas-
sortative. Usage of Spearman’s �, or even Kendall’s � was suggested as a replacement [vdHL15],
but the treatment of ties was problematic for both measures. In this paper we first argue analytically
that the tie-aware version of � solves the problems observed in [vdHL15], and we show that New-
man’s assortativity is heavily influenced by tightly knit communities. Then, we perform for the
first time a set of large-scale computational experiments on a variety of networks, comparing as-
sortativity based on Kendall’s � and assortativity based on Pearson’s correlation, showing that the
pernicious effect of size is indeed very strong on real-world large networks, whereas the tie-aware
Kendall’s � can be a practical, principled alternative.

1 Introduction

Assortativity (or assortative mixing) is a property of networks in which similar nodes are connected.
More in detail, here we consider the degree assortativity of (directed) networks, that looks at whether
the indegree/outdegree of x is correlated to the indegree/outdegree of y over all the arcs x → y of the
network. One has thus four types of assortativity (denoted by +∕+, −∕+, −∕− and +∕−), and for each
type one has to choose which measure of correlation should be used between the lists of degrees at
the start/end of each arc. The classical definition of assortativity given by Newman [New02, New03]
employed Pearson’s correlation.

In a seminal paper, Litvak and van der Hofstad [LvdH13] have shown analytically that on patho-
logical examples and on heavy-tailed undirected networks Pearson’s degree-degree assortativity tends
to zero as the network gets large, because of a size effect induced by the denominator of the formula.
They go on to suggest to use of Spearman’s � (which is Pearson’s correlation on the rank of the values)
to correct this defect.

A subsequent paper [vdHL15] has shown that the same problem plagues Pearson’s degree-degree
correlation in the directed case: the authors explore also briefly, besides the � coefficient, the possibility
of using Kendall’s �, but they do not completely resolve the problem of ties. In their work, they suggest
to use averages or randomization to correct for the presence of ties in the case of Spearman’s �, and
simply neglect them in the case of �, noting that this choice constraints (in a negative way) the possible
values that � can assume.

In this paper, first we extend analytically some of the results above, showing that the version of
Kendall’s � that takes ties into consideration (sometimes called �b) has the same (better) behavior as
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Spearman’s � on the pathological examples, and thus does not suffer from the limitations highlighted
in [vdHL15]. Moreover, we show that tightly knit communities can influence in pernicious ways assor-
tativity. Then, we perform several computational experiments on various web graphs and other types
of complex networks, computing both Pearson’s and Kendall’s degree-degree correlations: by looking
inside the data, we confirm the bias in the former when large networks are involved, and also give
empirical evidence of the effect of tightly knit communities.

All data used in this paper are publicly available from the LAW, and the code used for the experi-
ments is available as free software as part of the LAW Library.1

2 Definitions and conventions

In this paper, we consider directed graphs defined by a setN of n nodes and a set A ⊆ N ×N of arcs;
we write x→ y when a = ⟨x, y⟩ ∈ A and call x (respectively, y) the source (respectively, target) of the
arc a, denoted by s(a) (respectively, t(a)). Our graphs can contain loops (arcs a such that s(a) = t(a)).
A successor of x is a node y such that x→ y, and a predecessor of x is a node y such that y→ x. The
outdegree d+(x) of a node x is the number of its successors, and the indegree d−(x) is the number of
its predecessors.

A symmetric graph is a graph such that x → y whenever y → x; such a graph can be identified
with an undirected graph, that is, a graph whose arcs (usually called edges) are subsets of one or two
nodes. In fact, in the following, all definitions are given for directed graphs, and apply to undirected
graphs through their loopless symmetric representation.

3 Assortativity

Degree-degree assortativity measures the propensity of nodes to create links to nodes with similar
degrees. Since we consider directed graphs, there are four types of assortativity: outdegree/outdegree,
indegree/outdegree, indegree/indegree, and outdegree/indegree, denoted by+∕+,−∕+,−∕−, and+∕−,
respectively. As noted in [vdHL15], the only case in which an arc contributes to the degrees on both of
its sides is+∕−, which makes the+∕− case the natural generalization of the undirected case [LvdH13].
The assortativity is defined as a measure of correlation between the appropriate list of degrees at the
two sides of the list of all arcs of the graph. More precisely, for any given correlation index c, and every
choice of �, � ∈ {+,−}, we define the c-assortativity of type (�, �) as

c�� (G) = c
([

d�(s(a))
]

a∈A ,
[

d�(t(a))
]

a∈A

)

where [−]a∈A are used to denote a list ranging over all arcs of the graph (the order is immaterial,
provided that it is coherent, i.e., the same for both lists).

Newman’s definition of assortativity [New02, New03] uses Pearson’s correlation coefficient for c.
However, there are many other possibilities to measure the correlation between degrees. One can use,
as an alternative, Spearman’s � [Spe04], which is Pearson’s correlation between the ranks of the values
in the lists: this choice has some advantages, but it does not provide a solution for ties, that is, duplicate
degrees.

Correct handling of ties in degree lists is of utter importance because in a real-world graph a large
percentage of the arcs is involved in a tie (e.g., the outdegree of the target of all arcs pointing at the

1http://law.di.unimi.it/
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same large-indegree node are the same). In [vdHL15], the authors resort to typical solutions such as
averaging or randomization, which however have been shown to be detrimental and, in fact, decrease
the amount of correlation [Vig15].

An alternative that handles ties in a principled way is Kendall’s � correlation index, when formu-
lated properly (see next section). However, the authors of [vdHL15] used a formulation that had been
designed for lists without ties, obtaining pathological results. We are going to show that this problem
can be fixed using a proper version, thus providing more proper handling of degree ties.

4 Kendall’s �, 1945

The original and most commonly known definition of Kendall’s � is given in terms of concordances and
discordances. We consider two real-valued vectors r and s (to be thought of as scores) of n elements,
and assume that no score appears twice in a vector (i.e., there are no ties). We say that a pair of indices
⟨i, j⟩, 0 ≤ i < j < n, is discordant if si < sj and ti > tj , or si > sj and ti < tj , concordant otherwise.
Then, the � between the two vectors is given by the number of concordances, minus the number of
discordances, divided for the number of pairs. Note that all scores must be distinct.

In his 1945 paper about rankingwith ties [Ken45], Kendall, starting from an observation ofDaniels [Dan43],
reformulates his correlation index using a definition similar in spirit to that of an inner product. Let us
define

⟨r, s⟩ ∶=
∑

i<j
sgn(ri − rj) sgn(si − sj),

where

sgn(x) ∶=

⎧

⎪

⎨

⎪

⎩

1 if x > 0
0 if x = 0
−1 if x < 0.

Note that the expression above is actually an inner product in a larger space of dimension n(n − 1)∕2:
each score vector r is mapped to the vector with coordinate ⟨i, j⟩, i < j, given by sgn(ri − rj). Thus,
we can define

�(r, s) ∶=
⟨r, s⟩

√

⟨r, r⟩ ⋅
√

⟨s, s⟩
. (1)

Essentially, we are defining a cosine similarity, which we can compute easily as follows: given a pair
of distinct indices 0 ≤ i, j < n, we say that the pair is

• concordant iff ri − rj and si − sj are both nonzero and have the same sign;
• discordant iff ri − rj and si − sj are both nonzero and have opposite signs;
• a left tie iff ri − rj = 0;
• a right tie iff si − sj = 0.

Let C,D, Tr, Ts be the number of concordant pairs, discordant pairs, left ties, right ties, and joint ties,
respectively. We have

�(r, s) = C −D
√

(n
2

)

− Tr
√

(n
2

)

− Ts
.

Note that a pair that is at the same time a left tie and a right tie (a so-called joint tie) will be counted
both in Tr and in Ts.
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Figure 1: The graphs G(p, q) and Ĝ(p, q).

5 The Case for Ties in Kendall’s Assortativity

As an example of the importance of ties in the computation of Kendall’s assortativity, we consider the
graphs G(p, q) and Ĝ(p, q) defined in [vdHL15][Section 5.1] and shown in Figure 1. The graphs are
made by a directed 1-path or 2-path (whose arcs we will call g, or g0 and g1, respectively), with p
further nodes v0, v1,… , vp−1 pointing to the source of the path (the p corresponding arcs are named
e0, e1,… , ep−1) and q nodes w0, w1,… , wq−1 pointed by the target of the path (the q corresponding
arcs are named f0, f1,… , fq−1). Overall, the graph has G(p, q) has p+ q+1 arcs, whereas Ĝ(p, q) has
p + q + 2 arcs.

On these graphs, Pearson’s assortativity of type −∕+ behaves in a completely pathological way: for
G(n, an), it tends to 1 as n → ∞, because the mass associated with the arc g becomes very large, due
to its very large indegree, whereas the assortativity of Ĝ(n, an) tends to 0 [vdHL15]. This is extremely
counterintuitive, because the two networks are almost identical. In particular, in both cases one expects
to measure a significant disassortativity2, because a large fraction of arcs are disassortative (both the
ei’s and the fj’s are such).

Using Spearman’s � makes assortativity correctly tend to −1 in both cases if one solves ties by
giving equal rank to equal elements; one has, however, widely different results with different methods
for ranking ties.

The limit of Kendall’s � as n → ∞ without taking ties into consideration is −2a∕(a + 1)2, which
tends to zero as a grows. The authors comment that this is due to the influence of ties, and indeed
we are going to show that using the correct tie-aware version Kendall’s � solves the problem: the
network becomes disassortative, as the fraction of concordant pairs goes to zero whereas the fraction
of discordant pairs does not. This happens naturally, without having to choose a policy for ties.

Looking again at the −∕+ assortativity, we see that in both graphs there are p arcs (the arcs ei) with
degree pairs ⟨0, 1⟩ and q arcs (the arcs fj) with degree pairs ⟨1, 0⟩. Finally, in G(p, q) we have one arc
with degree pair ⟨p, q⟩, whereas in Ĝ(p, q) we have one arc with degree pair ⟨p, 1⟩ and one arc with
degree pair ⟨1, q⟩. We will assume 2 < p < q in the following.

In G(p, q) we have:
• p + q concordances, given by the pairs ⟨ei, g⟩ and ⟨fj , g⟩.
• pq discordances, given by the pairs ⟨ei, fj⟩.
• (p

2

)

+
(q
2

) left ties, given by distinct pairs of ei’s, and distinct pairs of fj’s.
2We use “unassortative” for networks with a correlation close to 0, and “disassortative” for networks with a correlation

close to −1.
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• (p
2

)

+
(q
2

) right ties, given by the same pairs.
All in all, we thus have

�G(p,q) =
p + q − pq

√

(

(p+q+1
2

)

−
(p
2

)

−
(q
2

)

)

⋅
(

(p+q+1
2

)

−
(p
2

)

−
(q
2

)

)

.

In Ĝ(p, q), by an analogous analysis we have

�Ĝ(p,q) =
p + q − pq − 1

√

(

(p+q+2
2

)

−
(p
2

)

−
(q
2

)

− q
)

⋅
(

(p+q+2
2

)

−
(p
2

)

−
(q
2

)

− p
)

.

If we consider the case p = n, q = an with a constant and n →∞, as in [vdHL15], we have

�G(n,an) =
n + an − an2

√

(

(n+an+1
2

)

−
(n
2

)

−
(an
2

)

)

⋅
(

(n+an+1
2

)

−
(n
2

)

−
(an
2

)

)

→ −1

�Ĝ(n,an) =
n + an − an2 − 1

√

(

(n+an+2
2

)

−
(n
2

)

−
(an
2

)

− an
)

⋅
(

(n+an+2
2

)

−
(n
2

)

−
(an
2

)

− n
)

→ −1

Thus, the proper definition aligns on this example Kendall’s � with the results from Spearman’s �, using
constant ranks for ties.3

6 The Tightly Knit Community Effect, Again

We are now going to discuss another, and possibly more pernicious, effect of size on Pearson’s assor-
tativity. This phenomenon is akin to the well-known tightly knit community (TKC) effect on certain
ranking algorithms such as HITS [Kle99]: a small group of tightly connected users ends up being
ranked unfairly high. For this section, we consider undirected graphs, as it is much simpler to compute
Pearson’s assortativity using the formulae from [VMWG+10], but the same considerations apply to
directed graphs.

Let us start from the graph H(p, q) defined as a (p, q) complete bipartite graph, in which the q
nodes are further completely connected (i.e., they form a q-clique). This graph (the red and blue nodes
in Figure 2) is highly unassortative, in the sense that its Pearson’s assortativity, which is p∕(1 − p− q),
goes to zero if q, p→∞, as long as p = o(q).

Let us now consider a graph Ĥ(p, q, k) formed by H(p, q) plus a (disjoint) clique of k vertices
(see Figure 2). Our interest is in measuring how much the clique (the most assortative graph) will
influence the unassortative graph H(p, q). In particular, we will look at Ĥ(p, p2, p1∕2+"): this is the
very unassortative graph H(p, p2), with p + p2 nodes, to which we are adding a clique of size p1∕2+"
(note that the number of added nodes for small " is negligible in the size ofH(p, p2)).

3We mention that also Goodman–Kruskal’s  [GK54], defined as the difference between concordances and discordances
divided by their sum, provides a principled treatment of ties. However, Kendall’s � has some advantages, and in particular
the possibility of defining tie-aware weighted versions [Vig15].
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Figure 2: The graph H(p, q, k). There are p red nodes (left), q blue nodes (center) and k black nodes
(right).

The formula for the Pearson’s assortativity ofH(p, q, k) is

1 −
pq(p − 1)2

(k(k − 1)3 + pq3 + qs3 − 1
2pq+q(q−1)+k(k−1)

(

pq2 + qs2 + k(k − 1)2
)2
,

where s = q + p − 1, and dominant term ofH(

p, p2, p1∕2+"
) as p→∞ is

p2"

1 + p2"
. (2)

Thus, we have a threshold effect as p→∞: for " < 0, the network becomes unassortative; for " = 0, as-
sortativity tends to 1∕2; but for " > 0, the network will become completely assortative. In other words,
a tightly knight community of orderΩ

(

n1∕4+"
)

can drive a large unassortative network to assortativity.
This impressive effect is evidently pathological.

Is there a similar phenomenon for Kendall’s assortativity? The value of Kendall’s assortativity on
H(p, q) is (maybe surprisingly) the same of Pearson’s assortativity, whereas the Kendall’s assortativity
of Ĥ(p, q, k) is

k(k − 1)(2p + q − 1) − qp2

k(k − 1)(2p + q − 1) + pq(q + p − 1)
.

When we examineH(

p, p2, p1∕2+"
) and let p→∞ we find a completely different situation, as assorta-

tivity tends to zero as −1∕p. However, the leading term ofH(

p, p2, p3∕2+"
)

is again (2), and a similar
transition effect appears.

In other words, also Kendall’s assortativity is subject to the TKC effect, but one needs a community
asymptotically much larger to obtain the same effect, that is, Ω(n3∕4+") vs. Ω(n1∕4+"). As an exam-
ple, the graph H(100, 10000) has a (Pearson’s and Kendall’s) assortativity of −0.010, but if look at
Ĥ(100, 10000, 200) (i.e., we add a clique of 200 nodes, increasing the size of the graph by less than
2%) we get an impressive increase in Pearson’s assortativity (it goes up to 0.997), whereas the Kendall’s
assortativity is still very small (0.029).

7 Experiments

We consider a set of networks available from the repository of the Laboratory for Web Algorithmics.4
The graphs are listed and briefly described in Table 1, which shows some of their basic properties:

4http://law.di.unimi.it/datasets.php
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Figure 3: Plots displaying the correlation between Pearson’s and Kendall’s assortativity.

more information can be found on the repository website. The list includes a variety of types of graphs,
both directed and undirected (i.e., symmetric), including web crawls, host graphs, Wikipedia graphs,
social networks (e.g., Twitter), telephone-call graphs, and co-authorship/co-starship graphs; their sizes
range from a few hundred thousands to billion of edges.

We computed assortativity values based on Pearson’s correlation and on Kendall’s � using the
implementations available in the LAW library, and we report the values in Table 2. Large differences
(≥ 0.20) are shown in boldface.

First of all, we remark that we can confirm the results aboutWikipedia graphs discussed in [vdHL15]:
they are unassortative for all types. However, when we consider social networks such as LiveJournal,
Twitter and Orkut, where we do expect some kind of assortativity, Kendall’s assortativity provides sig-
nificant larger values, proving for the first time that on real-world networks the size effect is substantial,
as it makes such networks appear unassortative according to Pearson’s correlation.

In Figure 3 we show a scatter plot of the values obtained by Pearson’s correlation versus those
obtained by Kendall’s �, sizing the dots depending on the number of arcs of the graph. In the −∕− and
+∕− case one can see immediately the strip of small graphs on the diagonal showing correlation, and
the pile of large graphs, all stationing around the value zero of Pearson’s correlation.

There is of course another feature that is evident: several web graphs have incredibly large assor-
tativity of type +∕+ (e.g., indochina-2004 has Pearson’s assortativity 0.9965 and Kendall’s assorta-
tivity 0.6195), which shows up as the block of large circles in the upper right part of the top left graph
of Figure 3. Is it really possible that web pages tend to link mostly to pages with the same number of
links?

The answer is no: the preposterously high score we are observing are simply due to the TKC effect.
Extremely connected sites (e.g., machine-generated tables or calendars) can have a very strong impact
on assortativity. For example, the densest website of non-negligible size (probably a link farm) in
indochina-2004 contains 7 611 nodes and 48 231 874 arcs (a density of 83%!). To study the role of
such dense websites, we can try to remove them from the graph (or, in the opposite direction, to add
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Table 1: The graphs used in the experiments.

Name Nodes Arcs
arabic-2005 22 744 080 639 999 458 A crawl of Arabic countries [BCSV04]
cnr-2000 325 557 3 216 152 A crawl of the CNR [BCSV04]
dblp-2010 326 186 1 615 400 The co-authorship graph from DBLP
dblp-2011 986 324 6 707 236 The co-authorship graph from DBLP
dewiki-2013 1 532 354 36 722 696 German Wikipedia
enwiki-2013 4 206 785 101 355 853 English Wikipedia
eswiki-2013 972 933 23 041 488 Spanish Wikipedia
frwiki-2013 1 352 053 34 378 431 French Wikipedia
eu-2005 862 664 19 235 140 A crawl of .eu [BMSV19]
gsh-2015-host 68 660 142 1 802 747 600 Host graph of a general crawl [BMSV19]
gsh-2015-tpd 30 809 122 602 119 716 Top domains of a general crawl [BMSV19]
hollywood-2009 1 139 905 113 891 327 The co-starship graph from the IMDB
hollywood-2011 2 180 759 228 985 632 The co-starship graph from the IMDB
hu-tel-2006 2 317 492 46 126 952 Call graph from Hungarian Telekom [KBCL07]
in-2004 1 382 908 16 917 053 A crawl of .in [BCSV04]
indochina-2004 7 414 866 194 109 311 A crawl of Indochina [BCSV04]
it-2004 41 291 594 1 150 725 436 A crawl of .it [BCSV04]
itwiki-2013 1 016 867 25 619 926 Italian Wikipedia
ljournal-2008 5 363 260 79 023 142 LiveJournal [CKL+09]
orkut-2007 3 072 626 234 370 166 The Orkut social network [MMG+07]
sk-2005 50 636 154 1 949 412 601 A crawl of .sk [BCSV04]
twitter-2010 41 652 230 1 468 365 182 Twitter [KLPM10]
uk-2002 18 520 486 298 113 762 A crawl of .uk [BCSV04]
uk-2005 39 459 925 936 364 282 A crawl of .uk [BCSV04]
uk-2014-host 4 769 354 50 829 923 Host graph of .uk [BMSV19]
uk-2014-tpd 1 766 010 18 244 650 Top domains of .uk [BMSV19]
webbase-2001 118 142 155 1 019 903 190 A crawl from the Stanford WebBase
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Table 2: Pearson’s and Kendall’s assortativity values for the graphs of Table 1. Boldfaced entries have
a difference larger than 0.20. Note that all values for the undirected graphs (e.g., orkut-2007) are all
identical.

+∕+ −∕+ −∕− +∕−
Name Pearson Kendall Pearson Kendall Pearson Kendall Pearson Kendall

hu-tel-2006 −0.0063 0.0660 0.0037 0.0768 −0.0107 0.0349 −0.0418 0.0266
ljournal-2008 0.2665 0.2835 0.1919 0.2656 0.0508 0.2689 0.0674 0.2989
twitter-2010 −0.0301 0.0410 −0.0089 0.3232 −0.0121 0.1886 −0.0506 −0.1395
orkut-2007 0.0158 0.2528 0.0158 0.2528 0.0158 0.2528 0.0158 0.2528
dblp-2010 0.3300 0.2827 0.3300 0.2827 0.3300 0.2827 0.3300 0.2827
dblp-2011 0.1296 0.1757 0.1296 0.1757 0.1296 0.1757 0.1296 0.1757
hollywood-2009 0.3555 0.3278 0.3555 0.3278 0.3555 0.3278 0.3555 0.3278
hollywood-2011 0.2073 0.2585 0.2073 0.2585 0.2073 0.2585 0.2073 0.2585
enwiki-2013 −0.0715 −0.0542 −0.0007 0.0126 −0.0077 −0.0385 −0.0553 −0.1287
frwiki-2013 −0.0469 −0.0136 0.0028 0.0037 −0.0110 −0.0458 −0.0564 −0.0778
dewiki-2013 −0.0398 −0.0395 0.0052 0.0295 −0.0109 −0.0058 −0.0518 −0.0934
eswiki-2013 −0.0301 0.0078 −0.0054 −0.0244 −0.0261 −0.1774 −0.1049 −0.1183
webbase-2001 0.4005 0.2817 0.2635 0.1483 −0.0048 −0.0486 −0.0107 0.1234
arabic-2005 0.9350 0.5456 0.5378 0.2766 −0.0288 −0.0916 −0.0539 0.0406
indochina-2004 0.9965 0.6195 0.9837 0.5068 0.0333 0.1704 0.0332 0.2397
eu-2005 0.0832 0.2942 0.0394 0.1388 −0.0239 −0.1541 −0.0815 −0.0947
in-2004 0.3219 0.4761 0.2883 0.2865 −0.0458 −0.0722 −0.0925 0.0908
it-2004 0.9003 0.4083 0.3582 0.1790 −0.0113 −0.1033 −0.0191 0.0304
sk-2005 0.9534 0.3375 0.2177 0.1353 −0.0078 −0.1351 −0.0343 −0.0633
uk-2002 0.5083 0.4219 0.2755 0.1338 −0.0050 −0.1383 −0.0209 0.0679
uk-2005 0.8334 0.6246 0.0337 0.2010 −0.0031 −0.1364 −0.0818 0.1781
cnr-2000 −0.0439 0.1237 −0.0027 0.1079 −0.0317 −0.1850 −0.0986 0.0099
itwiki-2013 −0.0678 −0.0209 0.0034 0.0429 −0.0114 −0.0284 −0.0666 −0.0758
uk-2014-host −0.0221 0.2792 −0.0093 0.2743 −0.0123 0.2005 −0.0296 0.2282
gsh-2015-host 0.0962 0.3674 0.5688 0.3547 −0.0297 0.2159 −0.0205 0.2558
uk-2014-tpd −0.0406 0.0755 0.0128 0.1679 −0.0100 0.1695 −0.0376 0.0988
gsh-2015-tpd −0.0092 0.2595 0.0544 0.3749 −0.0252 0.3471 −0.0243 0.3263
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Table 3: Pearson’s and Kendall’s assortativity values for variants of the graph G of indochina-2004.
HereH1 andH2 are the densest and second-densest non-negligible websites of this web graph, whereas
Kt is a clique of size t.

G −H1,2 G −H1 G G +K1000 G +K20 000

Pearson Kendall Pearson Kendall Pearson Kendall Pearson Kendall Pearson Kendall
+∕+ 0.5659 0.4167 0.7784 0.4342 0.9965 0.6195 0.9965 0.6233 0.9998 0.8026
−∕+ 0.2070 0.2005 0.3622 0.2252 0.9837 0.5068 0.9837 0.5118 0.9993 0.7917
−∕− -0.0200 -0.1344 -0.0269 -0.1262 0.0333 0.1704 0.0337 0.1717 0.5596 0.7075
+∕− -0.0672 0.0027 -0.0665 0.0063 0.0332 0.2397 0.0335 0.2403 0.5597 0.7112

a fictitious large clique) and see how this operation impacts on assortativity. Table 3 shows the results
for indochina-2004:

• The TKC effect is evident for +∕+ and −∕+, but the increase is more dramatic in Pearson’s than
in Kendall’s assortativity (in line with the discussion of Section 6).

• The same observation holds for −∕− and +∕− but in this case the phenomenon in Pearson’s
assortativity is diluted by the size effect: this web graph contains pages extremely large indegree
and zero outdegree (simply because the crawl was stopped before the outlinks of those pages
could be fetched); the arcs toward these pages contribute to a very large second component in
−∕− and +∕− (whereas they do not show up in +∕+ and −∕+).

• Once we remove the noise, the Kendall −∕− values tend to disassortativity, which is actually
what we expect from a web graph (highly pointed nodes of influential websites are, by and large,
linked by “normal” nodes): in other words, the noise from the TKC and the size effects com-
pletely hide the actual disassortative nature of the network.

Other web crawls behave similarly: the take-home message here is that one should be very cautious
when using assortativity values measured on noisy large-scale data such as web crawls, and that, in any
case, Kendall’s � is more robust and less sensitive to the TKC and size effects. In fact, computing both
measures is an excellent way to spot anomalous substructures in a network.

8 Conclusions

We have discussed important, practical shortcomings of measures of degree-degree correlation, in par-
ticular Newman’s assortativity, when applied to large networks. We believe that using Kendall’s �
in place of Pearson’s correlation might mitigate parts of the problems. More theoretical analysis and
experiments are however necessary to understand in detail the sensitivity of these measures to small
locally dense graphs. Kendall’s � requires some more computational effort, that is, O(m logm) (where
m is the number of arcs) rather than the O(m) time of Spearman’s and Pearson’s correlation. However,
there are O(m logm) algorithms based on sorting [Kni66] that are easily parallelized or distributed
among multiple computational units, which should help to mitigate the problem.
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