
Pictures from Mongolia∗

Extracting the Top Elements from a Partially Ordered Set

Paolo Boldi† Flavio Chierichetti‡ Sebastiano Vigna†

Abstract

You are back from that very long, marvellous journey. You have a thousand pictures,
but your friends and relatives will stand just a few dozens. Choosing is a painful process,
in particular when you cannot decide between the silent vastness of that desert and the
idyllic picture of that tranquil, majestic lake. We are going to help.

1 Pictures, pictures and more pictures

In the summer of 2004, Paolo, Sebastiano and four more friends took part to a long journey
in Mongolia, with a local guide, a driver and an old Uaz van. Five of the participants were
fond of taking pictures, and Mongolia met their match: long rivers flowing through luxuriant
meadows, high peaks covered with pine trees, wild horses running free, children laughing at
our passage, camels in sandy deserts. . . On our trip back to Italy, when we were in Moscow
for a short stop, we started to put together all the pictures we had been taking for three
weeks and discovered that we had about six hundreds of them! (We were using mainly digital
cameras and we had an old light laptop with us, so we had essentially no limit in the number
of pictures we could take.)

The number was scary, not only for us but also, and importantly, for all of our friends. If you
ever happened to be invited to one of those just-after-holidays dinners at one of your friend’s,
you know what we mean: at the end of the dinner, no doubt your friend will “propose” to
look at the pictures they have been taking during their holidays in Guatemala, and those
pictures turn out to be three hundreds, and most of them about a special tree growing in the
jungle, and. . .

Yet, choosing the best representatives from a set of objects is not an easy task; even the
very nature of preference is questionable, and has been largely debated by psychometricians
and economists (see, e.g., [CF88]). In particular, a much argued point is whether personal
preference is a transitive relation or not; even if some experiments actually prove that prefer-
ence may indeed not be transitive, it is commonly agreed that intransitive preference lead to

∗A preliminary version of this paper appeared in [BCV07].
†Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Italia. Partially supported

by the MIUR PRIN Project “Automi e linguaggi formali: aspetti matematici e applicativi”.
‡Dipartimento di Informatica, Università di Roma “La Sapienza”, Italia. Partially supported by a grant

of Yahoo! Research.

1

irrational behaviours. For this reason, it is by now accepted that preference can be modelled
as a preorder (a.k.a. quasiorder), that is, a transitive, reflexive relation that is not required
to be antisymmetric; for sake of simplicity, in this paper we shall mainly focus our attention
on partial orders, although all our algorithms can be easily extended to preorders (we discuss
this issue in Section 6).

So, in an abstract sense, we shall consider the problem of choosing the “best” t elements from
a set X of n elements subject to a given partial order; the exact notion of “best elements”
will be discussed shortly1. In our intended application, X is the set of all pictures, whereas
t is the number of pictures we are going to put in our album, and the order reflects the
preference of some given, rational subject.

An algorithm for this problem will present a sequence of pairs of pictures to the subject and
ask her to choose which of the two pictures she likes best, or if she is completely indifferent
about the two pictures. The computational cost we are going to take into consideration is
the number of comparisons the subject is requested to perform; notice, in particular, that we
shall not be considering the number of instructions executed or the space occupied by the
data (even though all our algorithms have a polynomial running time).

Apart for pictures, the problem may find more interesting applications to other areas; for ex-
ample, our algorithms suggest a new way to perform rank aggregation in information-retrieval
tasks. Rank aggregation is the problem of combining ranking results from various sources; in
the context of the Web, the main applications include building meta-search engines, combin-
ing ranking functions, selecting documents based on multiple criteria, and improving search
precision through word associations. Here, by rank we mean an assignment of a relevance
score to each candidate. Traditional approaches to rank aggregation [DKNS01, FKS03]
assume that ranks be aggregated in a single rank value that satisfies suitable properties.
Instead, we propose to produce a partial order by intersection, and then identify suitable
“best elements” of the partial order obtained in this way.

For more information on the possible applications of the problem we discuss, we direct
the reader to a very recent, independently developed, paper by Daskalakis, Karp, Mossel,
Riesenfeld and Verbin [DKM+07] that contains some results similar in nature to the ones
discussed here.

2 Basic setup

A partial order on a set X is a binary relation � on X that is reflexive (x � x for all x ∈ X),
antisymmetric (x � y and y � x imply x = y) and transitive (if x � y and y � z then x � z);
a poset is a set endowed with a partial order; in this paper, all posets will be finite. We let
x ≺ y mean x � y and x 6= y.

Two elements x, y ∈ X such that either x � y or y � x are called comparable, otherwise
they are called incomparable. A set of pairwise comparable (incomparable, resp.) elements
is called a chain (antichain, resp.). The width of a poset is the maximum cardinality of an
antichain.

1Note that this problem is significantly different from the complete reconstruction of the poset, a task
whose complexity has been largely studied in the literature, starting from the seminal paper [FT88].

2

Antichains are “no-clue” sets: we have no freakin’ idea as to which picture we would prefer
out of the set. Chains are “I-got-all-clues” sets: we have a precise idea about which picture
is better out of any pair.

We say that x covers y iff y ≺ x and, for every z, y � z � x implies either y = z or z = x.
Intuitively, x is “just better” than y.

A maximal (minimal, resp.) element in a subset Y of a poset (X,�) is any element y ∈ Y
such that y � y′ ∈ Y (Y 3 y′ � y, resp.) implies y = y′. Maximal elements are pictures
for which we cannot find a better one (but there might be many incomparable maximal
elements).

The notation x↓ denotes the set of all elements smaller than or equal to x.

3 Setting our goal

We wish to give a sound and meaningful definition of what are the “best” elements of a given
poset; this notion is quite obvious in the case of a total order, but turns out to be much more
subtle when partial orders are involved.

As a first attempt, an upper set seems a good idea. Given a poset (X,�), a set Y ⊆ X is an
upper set iff y � z and y ∈ Y imply z ∈ Y . Indeed, if we choose an upper set we are sure
that no picture more valuable than the ones chosen has been missed.

There is however a significant problem with this definition when we try to give an intuitive,
user-related meaning to incomparability. Our friends coming from Mongolia have pictures
from Lake Hovsgol and also from the Gobi Desert2. It is reasonable to assume that it is very
difficult to define preferences between pictures containing just sand and pictures containing
just water, so every picture from Gobi could be incomparable with every picture from Lake
Hovsgol. But in this case the pictures from Gobi would be an upper set, and a subset of
Gobi pictures that is also an upper set could provide a valid answer.

In other words, if we interpret incomparability as “different setting” or “different topic” or
“different subject”, we would like, say, to have at least the best picture for every setting,
or topic, or subject. Once we have the best pictures, if we still have room we would like
to get the second best pictures, and so on: intuitively, we would like to peel the top of the
poset by iteratively choosing the best pictures available. This idea suggests a more stringent
definition:

Definition 1 Let (X,�) be a poset, and define a sequenceX0,X1, X2, . . . of disjoint subsets
of X, called levels, where Xt is the set of maximal elements in X \ (X0∪X1∪· · ·∪Xt−1) (the
sequence is ultimately ∅). Let us define a new order v on X by setting X0 w X1 w X2 w · · ·
(elements within each Xi are incomparable). A top set is an upper set w.r.t. w; a top set of
size t is also called a t-top set.

More explicitly, top sets are exactly sets of the form X0∪X1∪· · ·∪Xi−1∪X ′i, where X ′i ⊆ Xi.

2Incidentally, “Gobi” in Mongolian means “desert”, which makes the expression “Gobi Desert” bizarre at
best.

3

Note that v is an extension of � (if x � y and y ∈ Xi necessarily x ∈ Xj for some j > i):
as a consequence, all top sets are upper sets (for �). The extension is in general proper: if
we consider the set X = {x, y, x′, y′ } ordered by x � x′, y � y′, we have that additionally
x v y′.
At this point, we are in a position to give a more precise definition of our problem: we are
given a poset (X,�) of n elements, and an integer t ≤ n, and we must output a t-top set3;
the poset is available only implicitly, in the sense that we do not know � in advance, but
our algorithm can use the poset as an oracle that, given two distinct elements x, y ∈ X,
answers either “x ≺ y”, or “x � y” or “x and y are incomparable”: such a call to the oracle
is named comparison (or query), and we want our algorithm to perform as few comparisons
as possible.

To measure the loss w.r.t. a hypothetical optimal algorithm, we will say that an algorithm
is θ-slow if it never makes more than

θ ·min
A

max
|P |=n

q(A , P, t)

queries to return the t-top set of a poset of size n, where q(A , P, t) is the number of queries
performed by algorithm A on the poset P of size n to return a t-top set.

Of course, there is a trivial algorithm that performs
(
n
2

)
comparisons and rebuilds the whole

poset, and in the worst case we cannot hope to perform a smaller number of comparisons:
every algorithm must perform at least

(
n
2

)
comparison on a poset made of n incomparable

elements to output a top set of n− 1 elements. Indeed, if x and y are never compared and,
say, y is not in the output, the algorithm would fail for a poset in which x ≺ y (note that
for this lower bound to work the choice to use top sets vs. upper sets is essential). This
consideration can be generalised to any t < n:

Proposition 1 Every correct algorithm must, in the worst case, perform at least

1

2
t(2n− t− 1) ≥ 1

2
tn

comparisons (0 < t < n) to determine a t-top set of a n-elements poset.

Proof. Assume that the algorithm outputs a t-top set T of a poset of n elements without
comparing every element of T with every element of P ; then, there is some x ∈ T and some
y ∈ P that have not been compared, and the algorithm would fail on a poset in which the
only comparable pair is x ≺ y. Indeed, in that case x should not be in the output, as t < n
and there are n−1 maximal elements. Hence, the algorithm performed at least

(
t
2

)
+ t(n− t)

comparisons, which is the left-hand side of the inequality in the statement (the right-hand
side follows from t < n).

We note by passing that a similar lower bound holds for upper sets. The previous proof can be
easily amended to provide a t(n−t) lower bound on the number of comparisons (if you output
t elements and you did not check against some of the remaining n− t, your output might not

3It may be worth noting that almost all the algorithms we are going to present can be modified so to
output not only a t-top set T , but also, for each t ∈ T , the level i to which t belongs (i.e., such that t ∈ Xi).

4

be an upper set). On the other hand, finding an upper set in O(t(n−t)) comparisons is trivial:
if t ≤ n/2 just look in a brute-force manner for a maximal element (n−1 comparisons), then
find another maximal element in the remaining n − 1 elements (n − 2 comparisons) and so
on. This requires (n− 1) + (n− 2) + · · ·+ (n− t) = tn− t(t+ 1)/2 ≤ 3

2 t(n− t) comparisons.
If t > n/2 we can work backwards, eliminating iteratively minimal elements, and returning
the remaining ones.

Maybe surprisingly, an absolutely analogous approach yields a 2-slow algorithm for top sets.
The only difference is that once we find a maximal element m, we start searching for elements
incomparable with m in the poset, and we output them. Some care, however, must be
exercised, as once an incomparable element has been output, all smaller elements are not
good candidates for the output, even if they are incomparable with m. So we must keep
track of which elements of the poset should be checked for incomparability with m, and
update them each time we output a new incomparable element. The details are given in
Algorithm 1.

Algorithm 1 A 2-slow algorithm.

top(P : a poset, t: an integer)

1: C ← ∅ {Candidate set: elements of the level to be peeled are to be found in here.}
2: L← P {Elements left for the next round.}
3: for t times do
4: if C = ∅ then
5: {We prepare to peel a new level}
6: C ← L
7: L← ∅
8: end if
9: set m to a maximal element of C

10: output m
11: add m↓ minus m to L {Keep all elements smaller than m for the next round. . . }
12: remove m↓ from C {. . . but remove m and all smaller elements from the candidates.}
13: end for

Theorem 2 Algorithm 1 outputs a t-top set.

Proof. Let O be the set of already output elements. We show that at the start of the loop,
C ∪ L = P \ O, and the maximal elements of C are the maximal elements of P \ (O ∪ L).
Indeed, the execution of the if statement (i.e., when C is empty, hence L = P \ O) does
not change these facts. When we output m we make it disappear from C and appear in
O, preserving the equation above (the elements strictly smaller than m are transferred from
C to L). Finally, since we remove m↓ from C, m also disappears from the set of maximal
elements of C, and no new maximal elements appear. This implies that the second property
is preserved, too.

To conclude the proof, we note that just after the i-th execution of the if statement, C
will contain the entire poset P minus the first i levels. This is certainly true at the first
reassignment, and thus the maximal elements of C are exactly the first level of P . Since

5

we remove them one by one, by the time we execute the second reassignment we will have
output exactly the first level, so we will now assign to C the entire poset minus the first level,
and so on.

Theorem 3 Algorithm 1 requires no more than t(2n− t− 1) comparisons to output a t-top
set of a poset with n elements. Thus, it is 2-slow.

Proof. The algorithm performs some comparisons only when finding maximal elements, and
when computing x↓. In both cases at most |C|−1 comparisons are needed, using a brute-force
approach. Note that at the start of the i-th iteration of the loop |C|+ |L| = n− i, as several
elements are moved between C and L, but exactly one element is output (and removed from
C) at each iteration, so in particular |C| ≤ n − i. The total number of comparison is then
bounded by 2 ((n− 1) + · · ·+ (n− t)) = 2tn− t(t+ 1) = t(2n− t− 1). The last claim then
follows immediately from Proposition 1.

4 Small-width posets

The reader might have noticed that our lower bound uses very wide posets (i.e., with width
Θ(n)). It is thus possible that limiting the width we can work around the lower bound,
getting a better algorithm for small-width posets. Indeed, we expect that settings, topics
or subjects should be significantly fewer than the number of pictures, or it would be very
difficult to choose a small best subset.

Looking into Algorithm 1, it is clear that we are somehow wasting our time by scanning for
one maximal element at a time. A more efficient strategy could be building in one shot the
set of maximal elements, peeling them, building the new set of maximal elements, and so on.

There are two difficulties with this approach: first of all, if we need a very small top set
we could make much more queries than necessary, as the set of maximal elements could be
significantly larger than the required top set. Second, rebuilding after each peeling the set of
maximal elements could be expensive.

There is not much we can do about the first problem, but our next algorithm (Algorithm 2)
tries to address the second one. If we divide P into two subsets and compute the respective
maximal elements, the latter will certainly contain all maximal elements of P (plus some
spurious elements). We can apply this reasoning recursively, building the set of maximal
elements incrementally. To avoid an expensive recomputation after each peeling, we will
arrange arbitrarily the elements of the poset P on the leaves of a complete binary tree T .
The binary tree then induces naturally a hierarchical partition of the elements of P—just
look at the leaves of each node of given depth. We will keep track of the maximal elements
of each subset of the partition, by suitably labelling each node of the tree. Initially, we will
find on the root the set M of maximal elements of P , which we can output. Then, we will
remove the elements of M from all labels in the tree, and recompute the new labels. The
process will continue until we have output enough elements.

Note that the width of the poset does not appear explicitly in the description of the algorithm.
Indeed, it will surface only during the analysis, when we shall put to good use the fact that
the labels on each node cannot be of cardinality larger than the poset width.

6

In what follows we shall tacitly assume that the algorithm uses some data structure to keep
track of the comparisons that have already been performed; in other words, for every pair
x, y ∈ X, we are able to tell whether x, y have ever been compared and, if so, the result of the
comparison. This assumption makes it possible to bound the number of comparisons using
just the number of pairs ever compared.

Algorithm 2 An algorithm for small-width posets

top(t: an integer)

1: let T be a complete binary tree labelled on subsets of P and with n leaves
2: label each leave of T with a singleton containing a distinct element of X
3: label the remaining nodes with ∅
4: while t > 0 do
5: completeLabelling(T)
6: let A be the label of the root of T
7: output u← min{ t, a } elements from A
8: t← t− u
9: remove the elements of A from all the labels

10: end while

completeLabelling(T : a binary tree)

1: recursively consider all non-leaf nodes v of T , bottom-up
2: let z0, z1 be the two children of v
3: for k ← 0, 1 do
4: for x a label of zk do
5: if no label of z1−k is greater than x add x to the label of v
6: end for
7: end for

Theorem 4 Algorithm 2 is correct.

Proof. To prove the statement, it is sufficient to show that after the i-th call to complete-
Labelling the label of the root is the i-th level of the input poset P . Given a node v of
T , we define the v-dominated poset v⇓ as the subset of elements of P contained in leaves
dominated by v with the order inherited from P . It is immediate to show by induction that
if each node v of T is labelled by a (possibly empty) set of maximal elements of v⇓, then after
a call to completeLabelling each node will be labelled by the set of all maximal elements
of v⇓. Indeed, during the recomputation of the labels we compute the maximal elements of
the union of the labels of the children. But the labels of the children contain (by induction)
all maximal elements of the respective dominated posets, and all maximal elements of v⇓
must appear in the labels of the children of v (if we partition a partial order in two disjoint
subsets, all maximal elements of the partial order are still maximal elements of the subset
they belong).

Thus, the label of the root after the first iteration is the first level of P . Then, either the
algorithm stops, or we remove the first level and call again completeLabelling. Since now
the tree contains just P minus its first level, and all labels are still maximal, the label of the
root will be the second level, and so on.

7

Theorem 5 Algorithm 2 finds a t-top set of a poset with n elements and width at most w
using

3

2
wn+ wt(blog nc − dlogwe)

comparisons.

Proof. We split the estimate of the number of comparisons in two parts. Define the depth
of a node in the standard way (the root has depth 0, and the children of nodes at depth d
have depth d+1). We shall call the nodes of depth smaller than blog nc−dlogwe interesting,
and the remaining nodes uninteresting. Note that the depth of the deepest node performing
comparisons is dlog(n+ 1)e − 2, and that

dlog(n+ 1)e − blog nc = 1 for all integers n.

Since we never repeat a comparison, all comparisons that could be ever performed on unin-
teresting nodes are very easily bounded:

dlog(n+1)e−2∑
i=blognc−dlogwe

2i
(
2dlog(n+1)e−2−i)2 =

dlog(n+1)e−blognc−2∑
i=−blogwc

2i+blognc(2dlog(n+1)e−blognc−2−i)2
=

−1∑
i=−dlogwe

2i+blognc(2−1−i)2
≤ n

dlogwe∑
i=1

2−i
(
2−1+i

)2
≤ n2dlogwe−1.

We now focus the rest of the proof on the interesting nodes. The number of elements contained
in each child of an interesting node can be just bounded by w, so in principle each time we
need to update the labels of an interesting node we might need w2 comparisons. This very
rough estimate can be significantly improved noting that we cannot increase indefinitely the
number of elements in a child (as it is bounded by w). Indeed, each time we add new elements
in a node, this generates some new comparisons in its parent. Nonetheless, as long as we add
elements, the number of overall comparisons performed by the parent approaches w2, but
can never get past it. So if we estimate an initial cost

blognc−dlogwe−1∑
i=0

2iw2 ≤ 2blognc−dlogwew2 ≤ n2−dlogwew2,

this estimate will cover all additions, as long as elements are never deleted.

Before considering the deletion of elements, let us bound the sum n2dlogwe−1 +n2−dlogwew2:

n2dlogwe−1 + n2−dlogwew2 = n
(

2dlogwe−1 + w22−dlogwe
)

= nw

(
1

w
2dlogwe−1 + w2−dlogwe

)
= nw

(
2dlogwe−logw−1 + 2logw−dlogwe

)
.

8

We let x = dlogwe − logw (note that x ∈ [0 . . 1)) so the previous expression becomes
nw
(
2x−1 + 2−x

)
. The function g(x) = 2x−1 + 2−x decreases for x < 1

2 and increases for
x > 1

2 . Thus, in the interval [0 . . 1), g(x) ≤ max{ g(0), g(1) } = 3
2 . We conclude that

n2dlogwe−1 + n2−dlogwew2 ≤ 3

2
nw.

Now, what happens when elements are deleted? In this case, the deleted element can be
replaced by a new one, and its cost is not included in our previous estimate. So we must fix
our bound by adding w comparisons for each node in which a deletion happens.

Let us make the above considerations formal. Each interesting node v has a bonus of w2

comparisons included in the estimate above. Let v ambiguously denote the number of labels
of a node v before a call to completeLabelling (so in particular v = 0 for all interesting v
at the first iteration), and v∗ the number of labels of v after the call. If ` and r are the left
and right child of v we show that, provided w2 − `r bonus comparisons are available before
the call, w2 − `∗r∗ are still available afterwards.

When we call completeLabelling, the labels of each node v must be updated. The update
involves comparing new elements that appeared in the children of v; at most (`∗− `)r+(r∗−
r)` + (`∗ − `)(r∗ − r) comparison are needed to update v. But since w2 − `r − (`∗ − `)r −
(r∗ − r)`− (`∗ − `)(r∗ − r) = w2 − `∗r∗ the invariant is preserved. The invariant is trivially
true before the first call, so we conclude that the costs of completeLabelling are entirely
covered by the bonus.

Finally, when we remove elements from the tree, each removed element potentially alters
blog nc − dlogwe interesting nodes, reducing by 1 the number of its labels. Thus, to keep
the invariant true we might need to cover some costs: with the same notation as above,
if, for instance, the set of labels of ` becomes smaller we need to compensate r + 1 ≤ w
comparisons to keep the invariant true for node v (symmetrically for r). Thus, removing an
element requires patching the bonus by at most w(blog nc−dlogwe) additional comparisons.

All in all, emitting t elements will require a fixed cost of 3
2nw comparisons, plus at most

w(blog nc − dlogwe) comparisons for each deleted element; since the deleted elements are
bounded by t the result follows easily.

Note that if w = o(t) Algorithm 2 is advantageous over Algorithm 1, as

wt log
n

w
= nt

(
log

n

w

)/(n
w

)
= o(nt).

The opposite happens if t = o(w). To see that this is not an artifact of the analysis of
the algorithm, just note that on a poset formed by w chains, each of height dn/we, if we
distribute each level (which has width w) on a set of adjacent leaves all possible comparisons
on uninteresting nodes will be performed during the first call to completeLabelling, so the
algorithm actually requires Ω(wn) = ω(tn) comparisons if t > 0.

As we will now show, the difference between the case t = o(w) and the case w = o(t) is not
an artifact of our analysis or of our algorithms, but rather an intrinsic feature of the problem.

Theorem 6 Every correct algorithm must, in the worst case, perform at least

w

2
(n− t)

9

queries to get a t-top set of a n-elements poset of width w ≤ t.

Proof. Suppose that a certain algorithm is trying to determine the t-top set of a n-elements
poset of width w; we build the poset adversarially using a w-colourable graph G with n
vertices { 0, 1, . . . , n− 1 } (each vertex represents an element of the poset). At the beginning,
the graph G is made by the n − t isolated vertices { 0, 1, . . . , n − t − 1 }, by bt/wc cliques
containing w vertices each and possibly (if w does not divide t) by a clique containing the
last t mod w elements; let us denote by U the elements of this last clique.

Every time the algorithm queries x :: y, we decide the answer as follows:

• if one element belongs to U and the other does not, we answer that the element in U
is larger;

• otherwise, if x and y are adjacent or can be made adjacent while still keeping the graph
w-colourable, we answer “incomparable” and add the edge {x, y }, if it is not already
in the graph;

• otherwise, we answer ≺ or � depending on whether x < y or x > y; note that in such
a case every w-colouring assigns the same colour to x and y: we say that x and y are
tainted ; when a vertex becomes tainted, it has degree at least w − 1, and it obviously
remains tainted thereafter.

At any time, you can build a poset of width w compatible with all the answers given so far as
follows: take any w-colouring of G, say c : { 0, 1, . . . , n−1 } → { 0, 1, . . . , w−1 } and consider
the partial order �c defined by x �c y iff c(x) = c(y) and x ≤ y, or x < n− t mod w ≤ y. In
such a poset, the only t-top set is {n − t, n − t + 1, . . . , n − 1 }, so this must be the correct
output: indeed, the last n− t mod w elements are larger than all the other ones; once these
are removed, the elements {n−t, . . . , n−t mod w−1 } form bt/wc cliques, each corresponding
to a layer in the poset.

Note that if the algorithm gives an output when a vertex z out of the first n− t ones is not
tainted, the output would be wrong if we made z the largest among the elements not in U
with the same colour as z. But a vertex z out of the first n− t ones must have been subject
of at least w queries to become tainted. We conclude that w(n− t)/2 queries are necessary
to guarantee that all of the first n− t vertices are tainted.

Using the same construction of the previous proof, but using a t-colourable graph and adding
a w-sized clique of smallest elements we can obtain the following result for the case t < w:

Corollary 7 Every correct algorithm must, in the worst case, perform at least

t

2
(n− t− w)

queries to get a t-top set of a n-elements poset of width w > t.

The previous theorems imply that, when t ≥ w and t = o
(
n/ log n

w

)
⊇ o (n/ log n), Algo-

rithm 2 is (3 + ε)-slow; when t < w and w = o(n) Algorithm 1 is (4 + ε)-slow. Here ε = ε(n)
and limn→∞ ε(n) = 0.

10

5 A probabilistic algorithm

We now attack the problem from a completely different viewpoint. Since our lower bounds
are based on very peculiar posets, we resort to a wonderful asymptotic structure theorem
proved by Kleitman and Rothschild [KR75]: almost all posets of n elements are good, that
is, they are made of three levels of approximate size n/4, n/2, and n/4, respectively4. The
idea is that of writing the algorithm as if all posets were good. In this way we will get an
asymptotically very fast (albeit “probably” useless) algorithm that returns top sets on almost
all posets.

Before embarking on this task, we should point out that we are not claiming that the structure
of good posets reflects a real-world situation, especially not in the case of pictures; rather,
it should be considered a promising starting point for further investigation, and a base case
that is useful when nothing is known about the actual distribution of inputs.

Stated in a slightly more precise form, Kleitman and Rothschild prove the following property.
If you draw at random a poset (X,�) uniformly among all posets of n elements, then with
probability 1−O(1/n) the poset is good, that is,5

• X can be partitioned into three antichains L1, L2 and L3;

•
∣∣|Li| − n

4

∣∣ ≤ √n log n for i = 1, 3;

• every element in Li only covers elements in Li+1 (for i = 1, 2); hence, in particular,
every element in L3 is minimal and every element in L1 is maximal;

• every non-maximal (non-minimal, resp.) element is covered by (covers, resp.) at least
n/8− n7/8 elements.

• every element in L1 (L3) covers (is covered by, resp.) at least n/4 − n7/8 elements of
L2.

In other words, almost every poset is made by just three antichains, and contains about
n/4 minimal and maximal elements, whereas the remaining elements are just “sandwiched”
between a maximal and a minimal element. The main idea of our first algorithm is that if we
need no more than

(
1/4− ε

)
n top elements, they are easy to find if the poset is good—and

almost all posets are good. Indeed, top elements are so easy to find that we can just extract
three elements at random, hoping that they form a chain, and in that case take the largest
element of the chain, as described in Algorithm 3.

Lemma 8 The probability that the Algorithm 3 fails is at most O(1/n).

4The original paper creates levels by stripping minimal elements, but by duality all results are valid also
in our case.

5The result proved in [KR75] is actually stronger, but we are only quoting the properties of good posets
that we will be needing in our proof.

11

Algorithm 3 An O(t+log n) algorithm for good posets and t ≤
(
1/4−ε

)
n; in the algorithm,

δ is any constant value in (0 . . 1).

top(P : a poset of order n, t: a positive integer, with t ≤
(
1/4−ε

)
n)

1: t′ ← max
(
32t/(5ε(1− δ)), 64 lnn/(5εδ2)

)
2: T ← ∅
3: i← 0
4: while |T | < t and i < t′ do
5: choose u.a.r. without replacement 3 elements x1, x2, x3 from P
6: perform all comparisons between x1, x2, x3

7: if the xi’s form a chain and xı̄ is the maximum then
8: T ← T ∪ {xı̄ }
9: P ← P \ {xı̄ }

10: end if
11: i← i+ 1
12: end while
13: if |T | = t then
14: return T
15: else
16: fail
17: end if

Proof. Let ξfail be the event that the algorithm fails, and let ξgood be the event that the
chosen poset is good. Then

P [ξfail] = P [ξfail | ξgood]P [ξgood] + P [ξfail | ξgood]P [ξgood] ≤

≤ P [ξfail | ξgood] + P [ξgood] ≤ P [ξfail | ξgood] +O

(
1

n

)
.

It is obvious that the event “the algorithm fails, given that the poset is good” is equal to
the event “less than t maximal elements have been added to T during the execution of the
algorithm, given that the poset is good”, so we shall bound the probability of the latter event.

We shall call a subset X = {x1, x2, x3 } ∈
(
P
3

)
proficuous iff the elements of X form a chain.

At any time during the execution of the algorithm the number of maximal elements will be
at least

(
1/4 − o(1)

)
n −

(
1/4 − ε

)
n = (ε − o(1))n. In particular, the fraction of maximal

elements will never go below ε− o(1).

At line 5 we choose the elements uniformly at random. The probability that x1 is a maximal
element is at least ε−o(1). Each maximal element covers at least 1

4n−o(n) median elements
(elements which are neither maximal nor minimal). Thus the probability that x2 is a median
element covered by x1 is at least 1

4ε − o(1). Finally, each median element covers at least
1
8n − o(n) minimal elements. Thus the probability that x3 is covered by x2 is at least
1
32ε− o(1). Since the elements can be permuted, the probability that a triple is proficuous is
at least 3

16ε− o(1).

We now derive the number of iterations t′ that are necessary to find t maximal elements with
the stated probability. If X is the random variable denoting the number of proficuous triples

12

obtained in these experiments, we have

E[X] = µ ≥
(

3

16
ε− o(1)

)
t′ >

5

32
εt′.

Chernoff’s bound, if t′ ≥ 32t/(5ε(1− δ)) for 0 < δ < 1, yields

P [X < t] ≤ P
[
X <

5ε(1− δ)
32

t′
]
≤ P [X < (1− δ)µ] ≤ e−µδ

2/2 ≤ e− 5
64 εt

′δ2 ,

so if t′ ≥ 64
5εδ2 lnn we get

P [X < t] ≤ 1

n
.

Thus the claim.

It is an easy observation that we can modify Algorithm 3 to select minimal elements, hence
we can use it when t ≥

(
3
4 + ε

)
n by selecting n − t minimal elements and giving in output

the rest of the poset.

We point out that the algorithm can fail in two different ways: unconsciously, if the given
poset was not good, or consciously, if the poset was good but not enough maximal elements
were found.

5.1 An O(n) algorithm for every t

We just presented fast algorithms for t small (less than
(

1
4 − ε

)
n) and t large (more than(

3
4 + ε

)
n). For the remaining cases, we provide an alternative linear algorithm.

Consider Algorithm 4: it tries to classify the elements of an (assumed good) poset into its
three levels (P1 should contain maximal elements, P3 minimal elements, and P2 the elements
in the intermediate layer).

Let us first observe that if we run Algorithm 4 on a good poset P the elements put in the
sets P1, P2 and P3 are classified correctly after the loop at line 3. Moreover

Lemma 9 In a good poset, the loop at line 3 performs O(n) comparisons with probability
1−O(1/n).

Proof. Consider a single execution of the loop at line 4, and let X be the random vari-
able denoting the number of times the condition at line 7 was true. For any given x1, the
probability to extract a chain involving x1 is at least (1/8 − o(1))2 ≥ 1/64 − o(1); hence
µ = E[X] ≥ |P ′|/65. Chernoff’s bound, if |P ′| ≥ 131 lnn/δ2, for 0 < δ < 1, implies

P

[
X < (1− δ) |P

′|
65

]
≤ P [X < (1− δ)µ] ≤ e−µδ

2/2 ≤ e−|P
′|δ2/130 = O(n−ρ)

for some ρ > 1. Letting P ′0, P ′1, . . . be the cardinality of P ′ after 0, 1, . . . executions of the
loop at line 3, we have |P ′0| = n and for each i > 0 the size reduction

|P ′i | ≤
64 + δ

65
|P ′i−1|

13

Algorithm 4 An O(n) algorithm for good posets and every t; in the algorithm, δ is any
constant value in (0 . . 1).

top(P : a poset of order n, t: a positive integer)

1: P1 ← ∅, P2 ← ∅, P3 ← ∅
2: P ′ ← P
3: while |P ′| ≥ 131 lnn/δ2 do
4: for all x1 ∈ P ′ do
5: choose u.a.r. without replacement two elements x2, x3 from P
6: perform all comparisons between x1, x2, x3

7: if there is a permutation π ∈ S3 such that xπ(1) � xπ(2) � xπ(3) then
8: for i = 1, 2, 3 do
9: Pi ← Pi ∪ {xπ(i) }

10: end for
11: end if
12: P ′ ← P − (P1 ∪ P2 ∪ P3)
13: end for
14: end while
15: for all x ∈ P ′ do
16: `←getLevel(x)
17: P` ← P` ∪ {x }
18: end for
19: given the subdivision of P into its three layers P1, P2, P3, determine some t-top set T
20: return T

getLevel(x)

1: q ← d7.5 lnne
2: choose u.a.r. with replacement q elements y1, y2, . . . , yq from the poset
3: compare x with yi, for i = 1, . . . , q
4: if no yi is greater than x and some yj is smaller than x then
5: return 1
6: else if some yi is greater than x and some yj is smaller than x then
7: return 2
8: else if some yi is greater than x and no yj is smaller than x then
9: return 3

10: else
11: fail
12: end if

14

happens with probability 1−O(n−ρ).

Notice that as long as the loop is repeated for a number of times that is o(nρ−1), the prob-
ability that the size reduction does not happen at some step is bounded by O(1/n), so with
probability 1−O(1/n) at step k = o(nρ−1)

|P ′k| ≤
(

64 + δ

65

)k
n.

Since after k = O(log n) steps |P ′k| < 131 lnn/δ2, we conclude that with probability 1−O(1/n)
the loop is exhausted having performed a size reduction at each step, which also imply that
the overall number of comparisons performed will be at most

k−1∑
i=0

3|P ′i | ≤
k−1∑
i=0

3

(
64 + δ

65

)i
n = O(n).

We are now ready to prove correctness of Algorithm 4:

Theorem 10 With probability 1 − O(1/n), Algorithm 4 finds a t-top set performing O(n)
comparisons.

Proof. Let ξfail be the event that the algorithm fails to find a t-top set, and let ξgood be the
event that the chosen poset is good. Then

P [ξfail] = P [ξfail | ξgood]P [ξgood] + P [ξfail | ξgood]P [ξgood] ≤

≤ P [ξfail | ξgood] + P [ξgood] ≤ P [ξfail | ξgood] +O

(
1

n

)
.

In the case of good posets, by Lemma 9 during the loop at line 3 O(n) comparisons are
performed with probability 1−O(1/n). In the second loop (at line 15) no more than O(log2 n)
comparisons are performed. In this part of the algorithm, though, it may happen that some
element is misclassified: the probability that x is non-maximal (non-minimal) and still no
element y that x covers (covered by x) is found is at most(

1− 1

8
+O(n−1/8)

)d7.5 lnne

≤ n7.5 ln(7
8 +O(n−1/8)) ≤ O

(
n−1.001

)
.

So, once more, with probability 1−O(1/n), all elements of P ′ are correctly classified at the
end of the second loop.

5.2 A probabilistic lower bound and a proof of optimality

In this section, we will prove that no algorithm that fails with small probability can perform
less than Ω(min(t, n− t)+ log n) queries, for 0 < t < n (this assumption is necessary, because
for t = 0 and t = n zero queries are sufficient). As a consequence, we shall obtain that our
probabilistic algorithms can be merged to obtain an asymptotically optimal one.

15

We say that a probabilistic algorithm is successful if, for some η > 0, its failure probability is
at most O(n−η). We will show that no successful algorithm can perform less than Ω(min(t, n−
t) + log n) queries.

Our first lemma states that, for a probabilistic algorithm to be successful, it must perform
Ω(min(t, n− t)) queries; otherwise, indeed, the failure probability does not even go to zero:

Lemma 11 Suppose that a probabilistic algorithm is given that never performs more than
q(n, t) queries. If q(n, t) = o(min(t, n− t)) and 0 < t < n then with nonvanishing probability
the algorithm fails to return a t-top set when the input is chosen u.a.r. among the posets of
cardinality n.

Proof. We can restrict without loss of generality to good posets, since they are a nonvan-
ishing fraction of all posets.

Let us call “compared” an element that has been used in a comparison at least once during
the execution of the algorithm. As q(n, t) is o(n), o(t) and o(n−t), we have that the compared
elements are at most

• a o(1) fraction of the elements in the output,

• a o(1) fraction of the elements not in the output,

• a o(1) fraction of the elements in the poset level Li, for each i = 1, 2, 3.

Now, for a given execution of the algorithm on an input poset of n elements, let P be the
class of good posets of n elements that are compatible with the answers provided to the
algorithm. The third property above says that, for every uncompared element u, the number
of posets in P where u ∈ L1 (u ∈ L2, u ∈ L3, respectively) is 1/4 + o(1) (1/2 + o(1),
1/4 + o(1), respectively) of the total.

The assumption 0 < t < n implies that there is some uncompared element x in the output,
and some uncompared element y not in the output. But now

• if t < (3/4− ε)n, the output is wrong for all posets in P where x is in L3;

• if t > (1/4 + ε)n, the output is wrong for all posets in P where y is in L1.

Each of the two latter events (x ∈ L3 and y ∈ L1) has probability at least 1/4 + o(1), so in
both cases the algorithm would fail with probability at least 1/4 + o(1).

We need something more than this, though: we need to prove that, if just o(log n) queries are
performed, then the probability that the algorithm fails is still too high. To show this result,
we first state a combinatorial lemma concerning the number of good posets with prescribed
sets of elements in their middle layer: for a given set X, let MX be the set of good posets of
n elements in which X is contained in the middle layer.

Lemma 12 Let A ⊆ { 0, 1, . . . , n− 1 } and x ∈ { 0, 1, . . . , n− 1 } \A; if a = |A| = o(n) then

|MA∪{ x }|
|MA|

=
1

2
+ o(1).

16

Proof. Let us first restrict our attention to the part of MA with prescribed cardinalities
`1, `2, `3 of the three layers (of course, `2 ≥ a). We can divide this set into classes, according
to the three sets of elements L1, L2, L3 that fall in each layer; these classes will all have the
same cardinality, by a simple relabelling argument, so we can limit ourselves to studying how
many of these classes will be such that x ∈ L2. This is equivalent to counting the number of
ways of dividing an n − a − 1 elements set into three parts of cardinalities `1, `2 − a − 1, `3
over the number of ways of dividing an n − a elements set into three parts of cardinality
`1, `2 − a, `3, so:

|MA∪{ x }|
|MA|

=

(
n− a− 1

`1, `2 − a− 1, `3

)/(n− a
`1, `2 − a, `3

)
=
`2 − a
n− a

=
1

2
+ o(1),

recalling that in a good poset `2 = n/2 + o(n), and a = o(n) by hypothesis.

We can now prove our second probabilistic lower bound:

Lemma 13 Suppose that a probabilistic algorithm is given that never performs more than
q(n, t) queries. If q(n, t) = o(log n) and 0 < t < n then, for all η > 0, with probability ω(n−η)
the algorithm fails to return a t-top set when the input is chosen u.a.r. among the posets of
cardinality n.

Proof. Let x1, x2, . . . , xk, with k = o(log n), be the elements queried by the algorithm, in
the order in which they are first queried; let ξgood be the event that the poset is good, and
ξi be the event that the poset is good and xi ∈ L2.

We start by showing that all the different elements queried by the algorithm will belong to
the middle layer L2 with nonnegligible probability, that is,

P [ξ1 ∩ · · · ∩ ξk] = ω(n−η), ∀η > 0. (1)

By the chain rule we get,

P [ξ1 ∩ · · · ∩ ξk] = P [ξgood]P [ξk ∩ ξk−1 ∩ . . . ∩ ξ1 | ξgood] =

= P [ξgood]P [ξk | ξk−1 ∩ . . . ∩ ξ1 ∩ ξgood]P [ξk−1 ∩ . . . ∩ ξ1 | ξgood] =

= P [ξgood]

k∏
i=1

P [ξi | ξi−1 ∩ . . . ∩ ξ1 ∩ ξgood].

By Lemma 12, P [ξi | ξi−1 ∩ . . . ∩ ξ1 ∩ ξgood] = 1/2 + o(1), as long as i = o(n). Since
P [ξgood] = 1−O(1/n), we have, for all η > 0,

P [ξ1 ∩ · · · ∩ ξk] =

(
1−O

(
1

n

))(
1

2
+ o(1)

)o(logn)

= ω(n−η).

Now, to obtain the contradiction, consider two cases:

• if t < (3/4− ε)n, we can assume that at least one output element x has not been com-
pared (because otherwise with the above probability the output contains only elements
from the middle layer, missing the elements from the top layer);

17

• if t > (1/4 + ε)n, we can assume that at least one element y not in the output has not
been compared (because otherwise the output contains all elements from the top and
bottom layers, but misses some elements from the middle layer).

In both cases, we can proceed as in the last part of the proof of Lemma 11.

It is now straightforward to obtain the following theorem:

Theorem 14 Every successful algorithm performs at least Ω(min(t, n − t) + log n) queries
to return a t-top set (0 < t < n) of a poset of order n chosen uniformly at random.

Now, we can merge Algorithm 3 and Algorithm 4 as follows:

• if 0 < t <
(
1/4− ε

)
n we apply Algorithm 3, performing O(t+ log n) queries;

• if
(
1/4− ε

)
n ≤ t ≤

(
3/4 + ε

)
n we apply Algorithm 4, performing O(n) queries;

• if
(
3/4+ε

)
n < t < n we apply a modified version of Algorithm 3 that searches for n− t

minimal elements, and returns the top set containing all the elements but those found;
in this case, we perform O((n− t) + log n) queries.

The algorithm obtained in this way performs O(min(t, n− t) + log n) queries, so it is optimal
in the class of successful algorithms (i.e., it is θ-slow with respect to the optimal algorithm
in the class, for some suitable constant θ).

6 Preorders

All our algorithms can be extended to work on preorders, as we informally show in this
section. A preorder is a set endowed with a reflexive, transitive relation � (which however
might fail to be antisymmetric). In a preorder, if x � y and y � x we say that x and y are
equivalent and write x ∼ y.

Suppose we take a picture of the same scene twice, to increase the probability that at least
one is not blurred, and that both copies turn out to be perfect shots. In this case, x ∼ y, as
we can clearly compare the two pictures, and we have no preference about one or the other.
This situation is very different from the sea/desert dilemma, in which we are not able to
express an opinion about which picture is better: in the case of the two shots, we want just
one of the two pictures, whereas in the incomparability case we would like to keep both.

There are at least two possible ways to extend the notion of t-top sets to preorders. One could
just search for a t-top set of the poset P/ ∼ obtained by quotienting the original preorder P
with respect to the equivalence relation ∼. In this case, the output of our algorithms should
be a set of equivalence classes. Alternatively, as a perhaps more sensible solution, we might
return an arbitrarily chosen representative for each equivalent class.

To treat preorders, we add a new possible answer to queries (denoted, of course, by x ∼ y).
We change the first two algorithms in the following way: instead of handling antichains, we
manipulate quasi-antichains, that is, sets of ∼-equivalent classes that are pairwise incompa-
rable (i.e., any two elements from distinct classes are incomparable, and any two elements

18

within the same class are ∼-equivalent). When the algorithm wants the query X :: Y to be
answered (where X and Y are ∼-equivalence classes), we choose arbitrarily an element in
x ∈ X and an element y ∈ Y and we pass the query x :: y to the oracle. If the result of the
query is x ∼ y, we just merge the two classes X,Y , adding a class X ∪ Y and removing both
X and Y . Otherwise, we let the algorithm proceed as before.

It is easy to check that this strategy works and that it does not increase the running time of
the algorithms. The deterministic lower bounds we gave trivially hold for preorders as well,
since each partial order is also a preorder.

6.1 Preorders in the probabilistic setting

To handle preorders in the probabilistic setting, we use Marcel Erné’s results [Ern74, page
253, lemma 4.6] stating that the ratio between the number of preorders of order n (therein
labelled A(n)) and the number of posets of order n (A0(n)) is

A(n)

A0(n)
= 1 + 2−n/2+O(

√
n logn) ≤ 1

1−O(1/n)
.

As a consequence, almost all preorders are good posets; more precisely, since the ratio between
the numbers of posets and preorders is at least 1 − O(1/n), and at least 1 − O(1/n) of
these posets are good, the fraction of preorders that turn out to be good posets is at least
(1−O(1/n))2 = 1−O(1/n).

This observation is sufficient to show that both the probabilistic algorithms and the corre-
sponding lower bounds hold for preorders as well.

7 Conclusions

We have introduced the problem of finding a set of t best elements (that we called top set)
from a poset of n elements. The first two solutions we have provided are deterministic: one
requires O(tn) comparisons, while the other needs O(wn + wt log(n/w)) (where w is the
width of the poset).

In general, the former algorithm is 2-slow (meaning that, for all posets, it does not pose more
than twice the number of queries that the best algorithm would pose in the worst case).

For posets of limited width w, under the assumption that t, w are not too large, we showed
an inherent difference between the cases t < w and t ≥ w: if t < w = o(n), the first algorithm
is (4 + ε)-slow, whereas if o(n/ log n) = t ≥ w the second algorithm is (3 + ε)-slow (here,
ε = ε(n) and limn→∞ ε(n) = 0).

Then, to beat the lower bounds used to determine the slowness of the two deterministic
algorithms, we assumed that the input poset was chosen uniformly at random between all
posets of size n. Under this assumption, we were able to obtain a probabilistic algorithm
capable of determining t-top sets in time O(min(t, n− t)+log n) with probability 1−O(1/n).
This probabilistic algorithm happens to be O(1)-slow in the class of all algorithms that choose
their input u.a.r. and fail with at most an inverse polynomial probability (that is, O(n−η)

19

for some η > 0). In other words, our algorithm is asymptotically optimal under the stated
success probability.

Finally, we considered preorders instead of just posets. A top set of a preorder is a top set of
the poset obtained by quotienting the preorder with respect to its equivalence relation. We
showed that all our upper and lower bounds hold also in the case of preorders.

Acknowledgements

We started chatting about this problem when we were still in Mongolia: we wish to thank
all our travel companions, namely, Roberto Cuni, Corrado Manara, Roberto Radicioni and
Lorenzo Virtuoso, our guide and translator (and cook!) Miss “it’s-possible” Nora, and, last
but not least, our tireless driver, mechanic, human-GPS, heroic Puujee.

We also want to thank Mongolia itself: among other things, for that August starry night in
the desert that we shall never forget. . .

References

[BCV07] Paolo Boldi, Flavio Chierichetti, and Sebastiano Vigna. Pictures from mongolia—
partial sorting in a partial world. In Proc. of Fun with Algorithms 2007, number
4475 in Lecture Notes in Computer Science, pages 66–77. Springer Verlag, 2007.

[CF88] T.A. Cowan and P.C. Fishburn. Foundations of preference. In Essays in Honor
of Werner Leinfellner, pages 261–271. D. Reidel, Dordrecht, 1988.

[DKM+07] Constantinos Daskalakis, Richard M. Karp, Elchanan Mossel, Samantha Riesen-
feld, and Elad Verbin. Sorting and selection in posets, July 2007. Computing
Research Repository (CoRR). Available at http://arxiv.org/pdf/0707.1532.

[DKNS01] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation
methods for the web. In WWW ’01: Proceedings of the 10th international con-
ference on World Wide Web, pages 613–622, New York, NY, USA, 2001. ACM
Press.

[Ern74] Marcel Erné. Struktur- und Anzahlformeln für Topologien auf endlichen Mengen.
Manuscripta Mathematica, 11:221–259, 1974.

[FKS03] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Efficient similarity search and
classification via rank aggregation. In SIGMOD ’03: Proceedings of the 2003
ACM SIGMOD international conference on Management of data, pages 301–312,
New York, NY, USA, 2003. ACM Press.

[FT88] U. Faigle and G. Turán. Sorting and recognition problems for ordered sets. SIAM
J. Comput., 17(1):100–113, 1988.

[KR75] D.J. Kleitman and B. L. Rothschild. Asymptotic enumeration of partial orders
on a finite set. Trans. of the American Mathematical Society, 205:205–220, 1975.

20

