
Mutable Strings in Java: Design, Implementation and
Lightweight Text–Search Algorithms

Paolo Boldi a Sebastiano Vigna a

aDipartimento di Scienze dell’Informazione, Università degli Studi di Milano

Abstract

The Java string classes, String and StringBuffer, lie at the extremes of a spectrum
(immutable, reference-based and mutable, content-based). Analogously, available text-search
methods on string classes are implemented either as trivial, brute-force double loops, or
as very sophisticated and resource-consuming regular-expression search methods. Moti-
vated by our experience in data-intensive text applications, we propose a new string class,
MutableString, which tries to get the right balance between extremes in both cases.
Mutable strings can be in one of two states, compact and loose, in which they behave more
like String and StringBuffer, respectively. Moreover, they support a wide range so-
phisticated text-search algorithms with a very low resource usage and setup time, using a
new, very simple randomised data structure (a generalisation of Bloom filters) that stores
an approximation from above of a lattice-valued function. Computing the function value
requires a constant number of steps, and the error probability can be balanced with space
usage. As a result, we obtain practical implementations of Boyer-Moore type algorithms
that can be used with very large alphabets, such as Unicode collation elements. The tech-
niques we develop are very general and amenable to a wide range of applications.

1 Introduction

The Java string classes, String and StringBuffer, lie at the extremes of a spec-
trum (immutable, reference-based and mutable, content-based).

However, in several applications this dichotomy results in inefficient object han-
dling, and in particular in the creation of many useless temporary objects. In very

Email addresses: boldi@acm.org (Paolo Boldi), vigna@acm.org (Sebastiano
Vigna).

URLs: http://boldi.dsi.unimi.it/ (Paolo Boldi),
http://vigna.dsi.unimi.it/ (Sebastiano Vigna).

Preprint submitted to Elsevier Science

large data applications, with millions of alive objects, the cost of this inefficiency
may be exceedingly high.

Another problem raises with a typical string usage pattern; in this common sce-
nario, you start with a mutable string object, of a yet-unknown length, and append,
delete, insert and substitute characters; at a certain point in time, you end up with a
string that will not be changed thereafter, and you would like to “freeze” its state.

To replicate this scenario using the standard Java string classes, you will most prob-
ably use a StringBuffer in the first phase, and then turn it into a String, by us-
ing the toStringmethod of StringBuffer. Unfortunately, the first phase will be
slowed down by the synchronisation of StringBuffer methods, whereas the ma-
jority of applications will not need synchronisation at all (or will accommodate their
synchronisation needs at a higher level). Moreover, turning the StringBuffer
into a String implies the creation of a new object.

Of course, one might simply decide not to turn the StringBuffer into a String,
but this makes it impossible to use it in the same optimised way as an immutable
string; even worse, it is impossible to use a StringBuffer in a collection, as it
does not override the equals() method provided by Object.

This dissatisfaction with the behaviour of String and StringBuffer is well
known in the Java community. For instance, the Altavista crawler, Mercator [1],
has been written in Java, but the authors admit that one of their first steps was
rewriting the standard Java string classes [2]. The authors have also experienced
similar troubles when writing their web crawler, UbiCrawler [3], and later when
indexing its results.

Sun itself is very aware of the problem: one of the suggestions given to people
struggling to improve application performance reads as follows [4]:

11.1.3.14 Making immutable objects mutable like using StringBuffers

Immutable objects serve a very good purpose but might not be good for garbage
collection since any change to them would destroy the current object and cre-
ate a new objects i.e., more garbage. Immutables by description, are objects
which change very little overtime. But a basic object like String is immutable,
and String is used everywhere. One way to bring down the number of objects
created would be to use something like StringBuffers instead of Strings when
String manipulation is needed.

For example, consider the following typical situation that exemplifies the scenario
discussed above: suppose that we want to count the number of occurrences of each
word contained in a set of documents. The number of words may get very large (say,
millions), so we want to minimise object creation. Thus, while parsing each docu-
ment we use a StringBuffer to accumulate characters and, once we’ve got our

2

word, we would like to check whether it is in a dictionary. Since StringBuffer
does not override equals, we have to make it into a String firstly. Now, this ap-
parently innocuous action is really causing havoc: the new string will get the buffer
backing array, and the buffer will mark itself as “shared”. If the word just found
must be added to the dictionary, we will insert a string containing a character array
potentially much longer than needed (as StringBuffer’s backing arrays grow ex-
ponentially fast). Even worse, the backing array of our StringBuffer cannot be
reused, even if we did not really insert the word into the dictionary. In fact, it cannot
be reused in any case, as a call to setLength(0) will reallocate it to a standard
length.

The purpose of this paper is to describe a new string class, MutableString, which
tries bridge the schism between String and StringBuffer. The name was cho-
sen so to highlight the fact that we are aimed at replacing String, but we want to
keep the mutable nature of StringBuffer. Some other proposals to replace the
standard Java string classes appeared in the last years, for instance [5,6].

It may be argued that in a lot of other situations String and StringBuffer are ef-
ficient. Nonetheless, in many power application the operations performed by these
classes behind the scenes may be very harmful. The following is a simple bench-
mark counting the number of occurrences of words in a 200 Mbytes text file 1 :

words/s (Linux) words/s (Solaris 9)

String/StringBuffer 902843 283961

MutableString 2360994 580478

Note that we do not claim that it is not possible to work around the problem and
use String and StringBuffer in a better way: the problem is that to do so you
must take into account non-documented behaviours that are clear only to people
knowing the API source code in depth.

MutableString, on the contrary, has been designed so that its inner workings
are extremely clear and well documented, trying to make all trade-offs between
time and space explicit, and clarifying the number of new objects generated by a
method call. This allows to keep under control the hidden (and potentially very
heavy) burden of garbage collection; since the latter runs in time proportional to
the number of alive objects, incrementing the frequency of garbage collection has
a cost that can grow independently of all other parameters. This aspect is usually
overlooked in the choice for more efficient algorithms, but it often backfires (as the
Java string classes show). 2

1 The benchmarks were produced on a Pentium 2.4 GHz running Linux, and on a Sun Fire
V880 based on SPARC 900 MHz processors and running Solaris 9.
2 Of course, garbage collection techniques become more and more sophisticated every day,

3

One should remark that immutable strings are much safer than mutable strings. In-
deed (for obvious reasons) any data structure becomes much safer when it is made
immutable, especially if immutability is enforced by the language type-checking
mechanisms. Nonetheless, we believe that immutable types are inappropriate for
data structures that undergo massive manipulation (e.g., strings), as every modifi-
cation leads to the creation, and eventually to the collection, of objects. This con-
sideration, of course, may not be appropriate for safety-critical applications, where
you don’t want to trade robustness for efficiency; it should be noted, however, that
the interruptions caused by the garbage collector are, in fact, one of the main obsta-
cles to the usage of Java in real-time applications, and most safety-critical software
is also real time.

Efficiency is an important leitmotiv in the design of MutableString; thus, in
the second part of the paper we turn to another typical dychotomy of Java string
classes (but the same may be said of other object-oriented languages). If we want to
perform search and replace operations on a string, we are offered just two ways of
proceeding: either, in the case of a constant string, by using a very inefficient, brute-
force double loop, or by setting up all the machinery that is necessary to perform a
regular-expression search.

The choice of implementing searches in String using a brute-force double loop,
as naive as it might seem, is not completely unjustified. Indeed, there are several so-
phisticated text-search algorithms available in the literature, but all of them require
a significant setup overhead, which makes them unsuitable for a general-purpose
method. For example, the simplest implementation of the Boyer–Moore search al-
gorithm [7] requires to set up a vector of integers with |A| elements, where A is
the alphabet. This aspect is often overlooked, as it is considered a constant-space
component of the algorithm. However, Java uses Unicode as native string alphabet,
and reserving a table for 216 characters, or, even worse, 231 collation elements, is
out of question.

The result is that many common searches end up being either too slow (because of
brute-force methods), or too resource-consuming (because of the large number of
objects that must be generated and collected for a regular-expression search).

The search methods implemented in MutableString use instead a kind of soft
data structure, that is, they help the search using a simple, randomised, inexact
data structure, a compact approximator, which has an extremely low setup cost,

and the scenario we described may suddenly become unexpectedly “gc-friendly”. More-
over, there is a line of thought that advocates devising usage patterns that are expected to
reduce the burden of garbage collection (e.g., object pooling). However, we strongly be-
lieve that trying to discipline program design around the current state-of-the-art in garbage
collection techniques is short sighted. More in general, it is better not to dirty your house
than to buy more and more expensive cleaning tools.

4

but gives a significant advantages over the brute-force method.

Compact approximators are a generalisation of Bloom filters [8]; they were devised
as a low-cost alternative to sophisticated data structures such as hash tables during
the development of MutableString. Using compact approximators, we imple-
ment a few relaxed versions of Daniel Sunday’s QuickSearch [9], a variant of the
Boyer–Moore algorithm. Since compact approximators have a more general ap-
peal, we will describe them in their full generality before explaining how we have
applied them to the text-search problem.

MutableString is distributed as free software under the GNU Lesser General
Public License within the MG4J project (http://mg4j.dsi.unimi.it/).

2 Design Goals

String handling is one of the most application-dependent kinds of code, and try-
ing to devise a string class that satisfies everybody may lead to a class satisfying
nobody.

The design of MutableString acknowledges that there are really two kinds of
strings: dynamical, fast-growing, write-oriented strings and frozen, static (if not
immutable), read-oriented strings. The radical departure from the standard string
classes is that the two natures are incorporated in the same Java class.

The other design goal of MutableString is efficiency in space and time. We have
in mind applications storing and manipulating dozens of millions of strings; trans-
formations such as upcasing/downcasing, translations, replacements etc. should be
made in place, benefit from exponentially-growing backing arrays, and be imple-
mented with efficient algorithms.

As far as memory occupation is concerned, we do not want to waste more than an
integer attribute, beside the backing array (notice that a integer attribute is the min-
imum requirement if you plan to have exponentially-growing backing arrays). On
the other hand, we do not want to give up hash code caching (at least for “frozen”
strings).

Finally, MutableString is a non-final class: it is open to specialisations that
add domain-specific features; nonetheless, for maximum efficiency all fundamental
methods are final.

5

3 Compactness and Looseness

A mutable string may be in one of two modes, compact and loose. When in loose
mode, it behaves more or less like a StringBuffer: its backing array gets in-
creased exponentially as needed, so that frequent insertion/append operations can
be performed efficiently; when in compact mode, the backing array gets increased
on request, as before, but no attempt is made to make it larger than it is strictly
needed (the rationale being that if a compact string requires modifications they will
be very rare: in this case, we prefer space occupancy to time performance). More-
over, when a loose MutableString is turned into a compact MutableString,
the backing array has really the same length as its real content.

The equals method for MutableString is based on the string content, as in
String, and the hash code is computed accordingly; the hash code of a compact
MutableString is cached, although no attempt is made to recompute it upon
changes (in that case, it simply becomes invalid).

Note that the mode has only influence on the expected space/time performance, not
on the object semantics: a MutableString behaves exactly in the same manner,
regardless of its mode, although changes are more expensive on compact strings,
and the computation of hash code is more expensive on loose strings.

MutableString provides two explicit methods to change mode; all remaining
methods (except ensureCapacity) preserve the string mode, and there are two
methods to test whether a MutableString is in a given mode or not. A mutable
string created by the empty constructor or the constructor specifying a capacity is
loose; all other constructors create compact mutable strings.

4 Implementation Choices

Attributes. A mutable string contains two attributes only: array, a backing char-
acter array that contains the actual string characters, and hashLength, an integer
value that embodies information about the mode of the string, and its length or its
hash code.

More precisely, if hashLength is negative, the string is compact, and corresponds
to the entire content of the backing array; moreover, the value of hashLength is
the hash code of the string (−1 represents an invalid hash code). Otherwise, the
string is loose, and hashLength represents the actual length of the string, that is,
the valid prefix of the backing array. All in all:

(1) hashLength ≥ 0: the string is loose, and hashLength contains its length;

6

(2) hashLength = −1: the string is compact, and coincides with the content of
array, but its hash code is unknown;

(3) hashLength < −1: as above, but hashLength contains the hash code.

The hash code of a mutable string is defined to be the hash code of the content-
equivalent string with the highest bit set. Note that in this way the empty string has
a valid hash code.

Reallocations. Backing array reallocations use a heuristic based on looseness.
Whenever a new capacity is required (because of an insert or append operation),
compact strings are resized to fit exactly the new content. On the contrary, the ca-
pacity of a loose string needing new space is computed by maximising the new
length with the double of the current capacity.

The effect of this policy is that reused strings or strings created without an initial
content will get large buffers quickly, but strings created with other constructors and
with few changes will occupy little space and perform very well in data structures
using hash codes.

Thus, reused or otherwise heavily manipulated strings may have a rapid growth, if
needed, and when their state is not to change anymore you can compact them (of
course, compacting a string may require reallocating the backing array).

Exposing Internals. It is well known that encapsulation and information hiding
are essential in object-oriented systems. Nonetheless, in our opinion String and
StringBuffer are a bit too drastic in forbidding any access to their backing ar-
rays and internal variables. MutableString, on the contrary, does not inhibit sub-
classes to manipulate array and hashLength. In fact, you can even get (at your
own risk) a direct reference to array; since hash codes are cached, the changed()
method should be invoked immediately after modifying the backing array so to
force an invalidation of the cached value. Note, however, that is not possible, even
with the access provided, to make the object state incoherent up to the point of
causing an exception to be thrown: the only mismatch that may happen is between
a compact string content and its cached hash code.

5 Method Optimisation: Searching

One of the fastest known algorithms for searching a pattern (i.e., a string) in large
texts is the Boyer–Moore algorithm [7], along with its many variants (e.g., [10,11,12,13,9]).
All variants are based on the following simple idea: Let p be the pattern of length

7

P and t be the text of length T to be searched 3 . The pattern occurs in position k if
pi = tk+i for all 0 ≤ i < P . Now, when examining a candidate position k, we com-
pare the characters tk+m−1, tk+m−2, and so on, with the corresponding characters
of the pattern. If a mismatch is detected at some point, we have to increment k, and
consider a new candidate position. To choose the increment for k (called the shift),
we can exploit many heuristics based on information obtained during the scan, and
on the structure of the pattern.

A well-known heuristic used in the basic version of the algorithm (and in almost
all variants) is the so-called bad-character shift. Suppose that while examining po-
sition k we find a mismatch at index j , that is, p j 6= tk+ j but ph = tk+h for h > j .
Instead of incrementing k by just one, we may want to align the pattern so that the
last occurrence of tk+ j in the pattern is in position k + j , at least in case the last
occurrence of tk+ j happens before position j . Note that if tk+ j does not occur at all
in the pattern we can directly shift the pattern by j + 1.

For instance, if we have a mismatch on the first check, that is, in position P − 1,
and tk+P−1 does not appear in the pattern we can shift the pattern by P (albeit
apparently infrequent, on large alphabets and small patterns this case occurs fairly
often). This will clearly speed up the search significantly.

Thus, in general, the shift is computed as j − `(tk+ j), where `(c) denotes the index
of the last occurrence of character c in the pattern, or −1 in case the character
does not appear. If the resulting value is not positive, the pattern is shifted by one
position.

The key ingredient for implementing the bad-character shift heuristic is a shift table
that stores `(c), and this is indeed how this heuristic is usually implemented in most
text-search libraries. In Java, however, using a shift table is out of question, because
of the alphabet size 4 .

Obvious solutions come to mind: for instance, storing this information in a hash
table. However, this approach raises still more questions: unless one is ready to
handle rehashing, it is difficult to estimate the right table size, as it depends on the
number of distinct characters in the string (even an approximate evaluation would
not completely avoid the need for rehashing). Moreover, the table should contain
not only the shifts, but also the keys, that is, the characters, and this would result
in a major increase of space occupancy. Finally, the preprocessing phase could
have a severe impact on the behaviour of the algorithm, in particular on short texts.
These considerations hold a fortiori for more sophisticated data structures, such as
balanced binary trees.

3 We will write pi and ti for the i-th character of p and t , starting from 0; the characters
are drawn from a fixed alphabet A.
4 We shall see, in fact, that even if one agrees to allocate a large amount of memory for a
shift table, the results are much worse than expected.

8

A very simple solution to this problem has been proposed in [14]: observe that
we can content ourselves to store upper bounds for `(c): this could slow down the
search, but certainly will not produce incorrect results. Thus, instead of using a hash
table with standard collision resolution, one might simply use a fixed-size table and
combine colliding values using maximisation.

This approach, however, has several drawbacks: first of all, it does not allow trade-
offs between space and errors; second, the birthday paradox makes it easy to get
collisions, even with relatively large tables; third, the technique is patented, and
thus cannot be freely used in academic or open source work.

We solve these problems by using the good statistical properties of compact approx-
imators, a generalisation of Bloom filters [8], a technique from the early 70s that
has seen recently a revival because of its usefulness in web proxies (see, e.g., [15]).
Starting from an approximation of the number of distinct characters in the pattern,
we provide a way to store an upper bound to ` that is tunable so to obtain a desired
error probability; with respect to a hash table, one of the main advantages is that
a bad estimate for the number of distinct characters can make the approximation
worse, but it is otherwise handled gracefully.

To be as general as possible, in the remaining part of this section we will discuss
our solution casting it into the more general framework of monotone approximation
of lattice functions.

5.1 Compact Approximators

For each natural number n ∈ N, we denote with [n] the set { 0, 1, . . . , n − 1 }.

Let L be a lattice [16], whose partial order relation is denoted by ≤; the greatest
lower bound (least upper bound, respectively) of two elements x, y ∈ L will be
denoted by x ∧ y (x ∨ y, resp.). L is assumed to contain a least element, denoted
by ⊥ (bottom).

Let � be a fixed set. Our purpose is to provide a data structure to represent, or to
approximate, functions � → L . Let f : � → L be a function; its support D(f) is
the set of all elements of the universe that are not mapped to ⊥, that is,

D(f) = { x ∈ � | f (x) 6= ⊥ }.

In our application, of course, � is the alphabet and L is the lattice of natural num-
bers.

Definition 1 Let d > 0 and m > 0. A d-dimensional m-bucket compact approx-
imator for functions from � to L is given by a sequence of d independent hash

9

functions h0, h1, . . . , hd−1 from � to [m], and by a vector b of m values of L. The
elements of b are called buckets.

When using an approximator to store a given function f : � → L , we fill the
vector b as follows:

bi =
∨

∃ j<d h j (x)=i

f (x)

In other words, the vector b is initially filled with ⊥. For each x ∈ � such that
f (x) 6= ⊥, a d-dimensional approximator spreads the value of f (x) in the buckets
of indices h0(x), h1(x),. . . , hd−1(x); when conflicts arise, the approximator stores
the maximum of all colliding values.

Now, the function induced by the thus filled approximator is defined by

f̃ (x) =
∧

j<d

bh j (x)

In other words, when reading f (x) from an approximator we look into the places
where we previously spread the value and compute the minimum.

The interest of approximators lies in the following (obvious) property:

Theorem 1 For all x ∈ �, f (x) ≤ f̃ (x).

Note that in case of the boolean lattice L = { 0, 1 } we obtain exactly a Bloom filter
(by approximating the characteristic function of a subset of �), whereas in case
d = 1 we obtain the structure described in [14].

As an example, consider the function f : � = [12] → N given by f (1) = 3,
f (5) = 1, f (9) = 2 and f (x) = 0 in all other cases. We let d = 2, b = 6,
h0(x) = bx/2c and h1(x) = 5x mod 6 (these functions have been chosen for
exemplification only). In the upper part of Figure 1, one can see how values are
mapped and maximised into the buckets; in the lower part, one can see how some
of the values are extracted. Note that some values are obtained from a single bucket,
because h0 and h1 coincide. The values for which f̃ (x) > f (x) are highlighted.

Our interest is now in estimating how often f̃ (x) = f (x). We divide our evaluation
in two parts: the bottom case and the nonbottom case.

The bottom case. Since we have in mind functions with a small support, we should
look carefully at

φ = Pr[f̃ (x) 6= f (x) | f (x) = ⊥],

that is, the probability of erroneous computation at a point in which f (x) = ⊥.
The analysis is similar to that of a Bloom filter: if |D(f)| = n (i.e., f is non-⊥ in

10

����������
������ ������������ ���

���
������ ���
���
������

0 1 2 3 4 5

2

0 1 2 3 4 5 6 7 8 9 10 11

0 3 0 0 0 0 0 2 0 00 1

3 0 0 2 3

3 0 0

0 1 2 3 4 5 6 7 8 9 10 11

23 0 0 0 2 2 20

Figure 1. A diagram representing a compact approximator.

n points), the probability that a bucket contains ⊥ is

(

1 −
1
m

)dn

.

To compute the wrong value, we must find non-⊥ values in all the buckets over
which we minimise. This happens with probability

φ =

(

1 −

(

1 −
1
m

)dn
)d

≈
(

1 − e− dn
m

)d
. (1)

100
200

300
400

500

m

0
20

40
60

80
100

120
n

0
0.2
0.4
0.6
0.8

1

rel. error

Figure 2. A plot of the relative error produced by approximation (1).

The expression on the right is minimised at d = m ln 2/n; the minimum is then
(1/2)d . This is a very good approximation of the exact result, as long as m is suf-
ficiently large: Figure 2 shows the relative error in the choice of d , comparing the
integer closest to m ln 2/n and the integer minimizing the left-hand side of (1); note

11

that even if the relative error may seem to grow significantly when n is smaller than
m, the absolute error is always at most one.

The estimates above show that we can reduce exponentially the error probability by
using more hash functions and a larger vector; the vector should be sized approxi-
mately as m = 1.44 dn.

Note that the presence of multiple hash functions is essential: for instance, when
d = 3 and m = 3n/ ln 2 we have φ = 1/8, whereas a single hash function gives
φ ≈ 1/5.

More precisely, if we set d = 1, since

1 − e− n
m =

n
m

+ O
(

n2

m2

)

when the ratio m/n grows we get inverse linear error decay, as opposed to expo-
nential.

The nonbottom case. This is definitely more complicated. Our interest is now in
estimating

ψ = Pr[f̃ (x) 6= f (x) | f (x) 6= ⊥],

that is, the probability of erroneous computation at a point in which f (x) 6= ⊥.
Note that

ψ =

s
∑

i=0

Pr[f̃ (x) 6= f (x) | f (x) = vi] Pr[f (x) = vi | f (x) 6= ⊥]

=

s
∑

i=1

ai

n
Pr[f̃ (x) 6= f (x) | f (x) = vi].

We now need to make some assumptions on the distribution of the values assumed
by f . Suppose that f assumes values ⊥ = v0 < v1 < · · · < vs , and that it assumes
value vi exactly ai > 0 times (i.e., | f −1(vi)| = ai). Then,

Pr[f̃ (x) 6= f (x) | f (x) = vi] =

(

1 −

(

1 −
1
m

)d
∑s

j=i+1 aj
)d

since the event f̃ (x) 6= f (x) takes place iff each of the d buckets assigned to x is
occupied by at least one of the

∑s
j=i+1 aj elements with values greater than vi . All

in all we get

ψ =

s
∑

i=1

ai

n

(

1 −

(

1 −
1
m

)d
∑s

j=i+1 aj
)d

.

12

The previous summation is not going to be very manageable. As a first try, we
assume that f takes each value exactly once (as in our main application), getting to

ψ =
1
n

n−1
∑

i=1

(

1 −

(

1 −
1
m

)d(n−i)
)d

,

where we used the fact that for i = s the summand is always zero (there is no way
to store erroneously the maximum value attained by f) and that now s = n. Note
that for each summand we can apply the usual approximation

(

1 −

(

1 −
1
m

)d(n−i)
)d

≈
(

1 − e−
d(n−i)

m

)d

Thus, each summand (which gives n times the error probability for value vi) is
minimised by d = m ln 2/(n − i). This is very reasonable: larger values gain
from numerous hash functions, as they are likely to override smaller values. For
the smallest value, the probability of error is very close to that of ⊥. The situation
is clearly depicted in Figure 3, which shows the error probability as a function of
d .

0

0.02

0.04

0.06

0.08

0.1

0.12

5 10 15 20 25 30
d

Figure 3. The error probability of each summand in the uniform case, with n = 8 and
m = 2n/ ln 2.

Even if we cannot provide an analytical minimum for ψ , the assumption that D(f)
is very small w.r.t. � makes a choice of d that minimises φ sensible.

Exponential Distribution. A similar partial analysis can be carried out if the values
are distributed exponentially, that is, vi = 2(s−i); in particular, this means that
f (x) = ⊥ on half of �. In this case,

∑s
j=i+1 aj = 2s− j+1 − 1, n = 2s+1 − 1 and

13

we get

ψ =

s−1
∑

i=0

2s−i

n

(

1 −

(

1 −
1
m

)d2s−i+1)d

,

where this estimate includes (when i = 0) the contribution of the bottom case.

In this scenario it is even more sensible to tune the choice of d and m/n using the
bottom case. Indeed, all summands behave much better (on one side, the error has
a lesser impact as i grows, as vi decreases exponentially; on the other side, larger
values have a greater probability of being stored exactly), as shown in Figure 4.

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50d

Figure 4. The error probability of each summand in the exponential case with n = 255 and
m = 2n/ ln 2.

5.2 Using Approximators in the Boyer–Moore Algorithm

The previous discussion paves our way toward an implementation of the Boyer–
Moore algorithm that uses an approximator to store the bad-character shift table.
Recall that the function we want to approximate is ` : A → Z, where `(c) is the
index of the last occurrence of c in the pattern, or −1 if the character does not occur.
For sake of implementation efficiency, we will indeed approximate `′ : A → N,
with `′(c) = `(c)+ 1, so that ⊥ = 0.

Notice that having an upper bound for `′ is sufficient for the Boyer–Moore algo-
rithm to work correctly, because of the way shifts are computed. More precisely,
when analysing a given candidate position k in the text, if the j-th character of the
pattern is the rightmost mismatch, and c is the text character found in that position
(the bad character), then we compute the shift as max(1, j − `′(c) + 1). Having
a larger value for `′ has the simple effect of reducing the shift. This is true even

14

for variations of the algorithm that look at different characters to compute the shift
(e.g., [9]).

A very noteworthy feature of compact approximators is that, unlike exact data struc-
tures (e.g., hash tables), their memory footprint may be limited a priori. Suppose
that we are confronted with a pattern containing, say, 100 000 distinct characters:
if we want to keep an exact bad-character shift table, we have to build a very large
data structure—there is no way to trade some memory for speed. On the contrary,
a compact approximator may be arbitrarily bounded in size: the effect of the size
bound is simply to make the approximation worse.

In particular, if we decide to bound the size of an approximator so that it fits into
the processor’s cache, the loss in precision is likely to be largely compensated by
faster access: see, in particular, the paradoxical results obtained on the Pentium and
shown in Table 4, where using the simplest exact data structure—an array—gives
actually much worse timings than a compact approximator.

5.3 Implementation Issues

Suppose we want to find occurrences of pattern p in text t . Devising an approxima-
tor for `′ requires choosing the various parameters involved in the approximation.

Estimating n. As a first step, we have to evaluate the number n of distinct char-
acters in p; a rough estimate is given by the length of p, but you can try to adopt
more sophisticate techniques to get a better bound for n (see, e.g., [17,18]). Note
that these are constant-space, linear-time techniques that give just an approxima-
tion, but this is perfectly acceptable, as approximation errors lead only to better or
worse precision in representing `′ (depending on whether the error is on the upper
or lower side).

Choosing d and m. Then, we must decide the number m of buckets and d of hash
functions we are going to use for the approximator. As explained above, one should
choose m and d so that d ≈ ln 2 m/n.

According to the analysis outlined in the previous sections, a larger value for d
reduces the error probability; on the other hand, choosing a value of d that is too
large may severely reduce the performance, because both the memory requirement
(number of buckets) and the time needed to consult the approximator grow linearly
with d .

The choice of d and m, hence, depends subtly on the quantity of memory available,
and on the trade-off between the time one needs to compute the d hash values and
the time that is wasted when a short skip is computed as a consequence of the

15

imprecise evaluation of `′. It is also a good idea to maximise the computed value
of m with a reasonable constant, so to compensate the setup overhead on very short
patterns.

Experimental results.

We ran a number of experiments to determine the performance of our solution. The
most important question concerns the number of positions that are considered for
matching; in particular, we are interested in the ratio between the number capp of
candidate matching positions considered by our approximate algorithm w.r.t. the
optimal number c of candidate positions considered by an exact implementation of
the Boyer–Moore algorithm using an entire skip table (in both cases, we are only
adopting the bad-character heuristic).

Figure 5 shows the ratios capp/c as a function of d for various situations. The di-
agram on the left shows the ratios in the case of three patterns of lengths 9, 18
and 27 made of characters that appear frequently in the text. Clearly, the relative
performance of the approximate algorithm decays as the pattern length grows. The
diagram on the right shows the same data for patterns made of characters that ap-
pear rarely in the text. We remark that in the first case 2 hash functions are sufficient
to limit the increment of capp to about 6%, even for the longest pattern. On the con-
trary, in the second case we need three functions to get similar results. The reason
is clear: in the latter case the cost of imprecise representation is high, because al-
most all characters in the text to be searched should be ⊥-valued (and thus provide
a large skip), but this will not happen with a too imprecise representation. The loss
is reduced in the former case because some of the most frequent characters are not
⊥-valued. In general, the evaluation of the effectiveness of a compact approximator
should be based on a distribution of the inputs that it will process.

The data we gathered suggest that 3 hash functions with 4.3n buckets are a good
choice; also 2 hash functions with 2.9n buckets behave reasonably, but have a sen-
sible loss with rare patterns. Note the strange peak at d = 5 for a rare pattern. This
phenomenon is almost unavoidable for some values of d , and it is due to the fact
that increasing the number d of hash functions may cause (in a transient way) an
error in the computation of `′ for a very frequent text character, such as “e” in En-
glish. The penalty in this case is very high, because comparisons with that character
will be frequent, and will increase substantially the number of positions considered
for matching.

Note that for “on-the-fly” searches, in particular on short strings, even setting up
a compact approximator could be too much. However strange it may seem, we
can still use a compact approximator—in fact, its boolean form, that is, a Bloom
filter—to obtain a very lightweight data structure that involves no object creation
at all: a single 32- or 64-bit integer can be used to fit a one- or two-hash boolean
approximator. The approximator records approximately which characters appear in

16

1
1.02
1.04
1.06
1.08

1.1
1.12
1.14
1.16

1 2 3 4 5 6 7 8
1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8

Figure 5. Ratios capp/c for frequent and rare patterns, with varying d .

the pattern. Thus, skipping is performed using the entire pattern length, or it is not
performed at all. This technique generates no objects, but speeds up significantly
searches, even for small patterns in small texts.

6 Method Optimisation: Multi-Character Searches and Replacements

Multi-character search and replace operations are very common in text processing,
and in particular in web applications. They usually take the form either of locating
the first occurrence of a character in (or out of) a certain set, or of computing the
maximal prefix of a string made of characters in (or out of) a certain set.

For instance, a very common usage pattern for strings in web applications is es-
caping: to be passed to some interpreter fragments of text, it is necessary to replace
characters in a certain set, transforming them in a suitable form that will be detected
by the interpreter (the most typical usage involves replacing the characters <, >, "
and & with the corresponding SGML entities).

Escaping cannot be performed (for obvious reasons) one character at a time: again,
we are left with setting up a complex (and slow) regular expression that will sub-
stitute each character with its translation.

On the contrary, MutableString offers a family of replace methods, which
allow one to substitute all occurrences of characters from a given set with a corre-
sponding String (character, CharSequence etc.). In particular, we implement a
version in which the set of characters is specified by an array, obtaining nonetheless
a low setup time and very fast searches (in fact, in some cases even faster than the
method taking a collection of characters as argument). Not surprisingly, we base
again our implementation on a Bloom filter.

Consider, for example, the method invocation s.replace(ca, sa) where s is
a MutableString, ca is a character array and sa is an array of Strings. This
method should substitute every occurrence of ca[i] with sa[i] for all indices i

17

less than the length 5 of ca.

The replace method must scan s twice: the first scan is needed to compute the
length of the new string, whereas the second scan actually performs the substitu-
tions. In both scans, when analysing a certain character s[k], we should check
whether the character should be replaced, in which case we should also determine
what is the string to be substituted. This would require a linear scan of ca, and most
of these steps will probably end up scanning the whole array before knowing that no
substitution was really needed (i.e., that there was no i such that s[k]==ca[i]):
in fact, we expect that only a small fraction of characters in the string requires a
replacement.

A straightforward solution to this problem is that of creating from ca and sa a Map
(from Characters to Strings) and then using the get method instead of scan-
ning the original array. From a theoretical viewpoint, this solution might largely
reduce the time needed to test whether a character requires a substitution (the get
method requires logarithmic time, in the case of a TreeMap, and constant expected
time, in the case of a HashMap, under the assumption that the hash codes are evenly
spread). Unfortunately, this solution requires the creation of a Map object and of as
many Character objects as the length of ca; moreover, the cost of a method call
for each test should be taken into account.

As an alternative, one could try to use a home-made tiny hash table to store the
set of characters to be substituted, but dimensioning it becomes problematic: hash
tables are not well suited for situations, like this, where almost all tests are expected
to give a negative answer. Neither is it possible to use a table storing, for each
character, the index where it appears in the array, if there is one, because such a
table would be exceedingly large for Unicode.

The solution adopted in MutableString is to use a one-hash Bloom filter to rep-
resent in an approximate way the set of characters to be searched for. Then, every
time a character s[k] is examined, we first check whether it is rejected by the fil-
ter: if so, then the character does not need to be substituted. Otherwise, we have to
scan the array.

Of course, false positives are possible, but they are quite rare: more precisely, with
rough but reasonable probabilistic hypotheses on the inputs and the set of characters
to be replaced, and assuming that most characters need no replacement, the gain in
speed is easily calculated using the formulae of [8], and turns out to be

mn

mn − (m − 1)n
,

5 The arrays ca and sa must have the same length; moreover, it is assumed that no char-
acter appears more than once in the array ca.

18

where m is the number of bits in the filter and n the length of ca (omitting, however,
the overhead that is necessary to check the content of the filter). In particular, using
m = 32 we have a speedup of 8 times using 4 characters. The speedup is still more
than 2 with 20 characters. Of course, as 64-bit processors become more common, it
may be reasonable to use a 64-bit mask. Benchmarks confirmed that this approach
is very effective: indeed, it very often outperforms a map-based implementation,
because it does not invoke any method.

In our current implementation, we hash characters using simply their least-significant
bits: this solution does not require any method call and can be computed in an ex-
tremely optimised way; moreover, because of the way Unicode charts are organ-
ised, we expect that natural-language documents contain characters that differ only
in their least-significant bits.

7 Benchmarking

Text search. We present benchmarks of the implementation of compact approxi-
mators used in MutableString 6 . The benchmarks were produced on a Pentium
2.4 GHz running Linux, and on a Sun Fire V880 based on SPARC 900 MHz pro-
cessors and running Solaris 9, using in both cases the Sun 1.4.1 JDK.

Benchmarking Java code is not an easy task, as the virtual machine performs several
activities that may slow down (garbage collection) or speed up (just-in-time compi-
lation) the execution. Our test were performed a large number of times, discarding
the first results (as they are slower than necessary, due to the virtual-machine warm-
up) and averaging over several executions.

During the development of our classes, we conducted extensive benchmarking, in
particular to tune finely the inner loops. Among the tests we performed, we selected
a small sample of cases that, we believe, give a flavour of the kind of speed-up
provided by our techniques. We compare four pattern-search methods:

• a brute-force double loop (as implemented in the indexOf()method of String);
• an exact implementation of the Boyer–Moore algorithm (more precisely, of its

variant known as QuickSearch [9]), using a Java Map to store the bad-character
shift table 7 ;

6 More precisely, the implementation of approximators is contained in a separate cless,
TextPattern, used by MutableString. It should be noted that the current distribu-
tion features several tweaks to fine-tune the techniques presented in this paper: for instance,
US-ASCII characters are treated separately using a vector, as they appear frequently in al-
most every Unicode text. The benchmarks we are reporting, however, are obtained using a
direct implementation of the algorithms in the form they are discussed in this paper.
7 Since Java does not provide maps handling primitive types without

19

• another exact implementation of QuickSearch, using an array;
• an approximate implementation of the same algorithm, using compact approxi-

mators and one of the approximate counting algorithms described in [18].

Our tests were performed on two 16Mbyte documents (one produced at random,
and the other one containing a US-ASCII English text), and consisted in searching
(all occurrences of) a 9-character and a 54-character pattern. In an attempt to ac-
count for garbage-collection overhead, we additionally provide timings obtained by
taking into account also the time required by a call to the System.gc() method,
which suggests the virtual machine to perform garbage collection. All timings are
in milliseconds.

The reader will notice that compact approximators work in all cases much better
than maps and better than the brute-force approach (even though, of course, on very
short patterns a brute-force loop will outperform any sophisticated algorithm). The
timings for arrays are given just for comparison, because, as we already remarked,
it is usually not practical to allocate such a large array (a quarter of megabyte in the
case of Unicode).

It is interesting to note that, in the case of a long pattern on a random text, the very
sparse memory accesses of the array implementation makes it even slower than the
approximator-based one, as most memory accesses are cache misses.

A final caveat: the impact of garbage collection may seem small, but the reader
must take into consideration that almost no objects were alive during the collec-
tion. As we mentioned in the introduction, in a real-world large applications, the
collection time may be much larger, even when searching the same pattern within
the same text.

Pentium (Linux) SPARC (Solaris)

w/ gc w/o gc w/ gc w/o gc

brute force 60 335

Map 120 114 402 395

array 30 27 190 185

approximator 56 52 252 238
Table 1
English 16Mbyte text, 9-character pattern.

HTML-ising a text. Just to give another hint of the performance of MutableString,
we consider a simple task: HTML-ising a string. We start from a web page of about
100K, and iteratively replace all occurrences of & with &.

wrappers, we really used a type-specific hash-table map from fastutil
(http://fastutil.dsi.unimi.it/).

20

Pentium (Linux) SPARC (Solaris)

w/ gc w/o gc w/ gc w/o gc

brute force 55 324

Map 71 65 224 216

array 26 22 113 111

approximator 31 28 134 131
Table 2
English 16Mbyte text, 54-character pattern.

Pentium (Linux) SPARC (Solaris)

w/ gc w/o gc w/ gc w/o gc

brute force 50 306

Map 116 108 365 359

array 49 45 189 181

approximator 48 42 200 194
Table 3
Random 16Mbyte text, 9-character pattern.

Pentium (Linux) SPARC (Solaris)

w/ gc w/o gc w/ gc w/o gc

brute force 49 310

Map 47 40 144 136

array 37 33 85 83

approximator 25 22 92 87
Table 4
Random 16Mbyte text, 54-character pattern.

Type calls/s (Linux) calls/s (Solaris 9)

compact MutableString 145.56 141.64

loose MutableString 581.39 199.20

StringBuffer 36.57 12.38

unsync’d StringBuffer 37.16 12.64

String 109.41 74.12

It should be said that the test had to be run on StringBuffer using an exter-
nal loop calling repeatedly lastIndexOf() and replace(), and that the test on
String used regular expressions (neither class contains something corresponding

21

to the versatile replace() method of MutableString). Note also that this test
was run without causing garbage collection: the reader should thus consider the
result obtained by String as a bit optimistic. The unsynchronised buffer case was
obtained by recompiling StringBuffer after stripping all synchronize key-
words.

The length() method. Of course, no class can be both more compact and faster:
space and time have their own laws and trade-offs. For instance, the length()
method has to check whether the string is compact or loose, and act accordingly.
The following benchmark gives an idea of the relative loss:

Type Mcalls/s (Linux) Mcalls/s (Solaris 9)

compact MutableString 285 89

loose MutableString 359 45

StringBuffer 64 8

unsync’d StringBuffer 393 223

String 393 177

It should be noted that on such a short method the results are mostly dependent on
architectural issues (caches, method inlining, etc.).

8 A String–Freedom Manifesto

In general, Java is a very flexible, well-designed, complete language, with vast and
carefully structured APIs; its mind-boggling complexity pays only a small price to
space/time efficiency, which makes it more and more appealing for the development
of critical, large applications.

APIs are generally designed so that you can simply rewrite a class (or a bunch of
classes) if you are not satisfied with its performances; so, a typical programming
pattern consists in using the standard, general-purpose APIs in the first steps of
development, and then, perhaps after profiling, in substituting only those classes
that are critical with other, hand-tailored versions.

Of course, you have to pay a price for this. For example, suppose that java.net.URL
performs too bad for your needs, and you want to change it with your version
foo.bar.MyURL. You are free to do so, but what about all classes and methods in
the java.net package that rely on URL? If you use them, you will probably have
to rewrite more classes: there is no way out of this, since there is nothing like a
URL-interface, and URL is final.

22

As you can expect, this price is small if you substitute, so to say, some exotic
well-hidden class of the hierarchy, but it becomes high if you substitute some fun-
damental, pervasive class, like String.

So what is the price you have to pay if you want to get rid of String, substituting
it with something else, say with MutableString? Of course, you can forget about
string literals: every time you want to initialise a MutableString using a literal
you have to use a String literal and throw it away immediately; however, there is
little harm in doing so, except that the Java String-literal pool becomes virtually
useless.

The use of the concatenation operator + becomes a trap: every time a MutableString
is concatenated with +, it is first turned into a String. Finally, all I/O related meth-
ods accepting Strings require an implicit or explicit call of toString().

MutableString tries to lessen this burden by providing built-in methods for com-
mon I/O operations: for instance, you can use s.println(System.out) to print
a MutableString to standard output.

A more reasonable solution, however, would be provided by a pervasive use in
the Java core APIs of the new CharSequence interface. Character sequences are
an abstraction of a read-only string, and are used, for instance, by the new reg-
ular expression facilities (indeed, you can split a MutableString on a regular
expression without creating a String object, since MutableString implements
CharSequence).

Every time there is a method accepting a String, there should also be a polymor-
phic version accepting a character sequence (String implements CharSequence,
so to be true you do not really need two methods: however, calls through an inter-
face are slower). Moreover, the string concatenation operator + should avoid use-
less calls to toString for objects which implement CharSequence. These small
changes would actually make a customisation of String and StringBuffer pos-
sible. As an additional optimisation, it would be very useful if CharSequence re-
quired the implementation of a getChars() method similar to that of String: in
this way, bulk copies would be performed much more quickly.

Nonetheless, one has to remark that the main problem remains that CharSequence
specifies no contract for equality. As a result, two classes implementing CharSequence
may contain identical sequences of characters, and nonetheless they may end up not
being equal (w.r.t. equals()). The pernicious side-effect is that it is impossible
to mix instances of classes implementing CharSequence in data structures (e.g.,
hash tables). Moreover, it is not possible to interrogate containers filled with in-
stances of classes implementing CharSequence (e.g., MutableString) using a
constant String: for practical reasons, MutableString implements equality so
that comparison with character-by-character equal strings will return true, but the
same does not happen with String. There is, unfortunately, no easy way out, as

23

both String and StringBuffer implement CharSequence, and they have dif-
ferent equality contracts.

9 Conclusions

We have presented MutableString, a new string class devised to make large-
scale text processing easier and more efficient in Java. Mutable strings are ex-
tremely compact, and can behave more like StringBuffer or String, as needed.
Moreover, they provide low-cost setup, efficient search and replace methods based
on a new approximated data structure. Many of the ideas presented in this paper, of
course, are applicable to many other object-oriented languages as well (in particu-
lar, the usage of compact approximators for Boyer–Moore type algorithms on large
alphabets).

References

[1] A. Heydon, M. Najork, Mercator: A scalable, extensible web crawler, World Wide
Web (1999) 219–229.

[2] A. Heydon, M. Najork, Performance limitations of the Java core libraries,
Concurrency: Practice & Experience 12 (6) (2000) 363–373.

[3] P. Boldi, B. Codenotti, M. Santini, S. Vigna, Ubicrawler: A scalable fully distributed
web crawler, in: Proc. AusWeb02. The Eighth Australian World Wide Web
Conference, 2002, to appear in Software: Practice & Experience.

[4] N. Nagarajayya, J. S. Mayer, Improving java application performance and scalability
by reducing garbage collection times and sizing memory using JDK 1.4.1,
http://wireless.java.sun.com/midp/articles/garbagecollection2/.

[5] T. A. S. Foundation, FastStringBuffer, this is a class of Xalan-J
(http://xml.apache.org/xalan-j/).

[6] T. Wang, 65% faster JavaTM string buffer implementation, technical paper on
http://www.hp.com/. (October 2001).

[7] R. S. Boyer, J. S. Moore, A fast string searching algorithm, Comm. ACM 20 (10)
(1977) 762–772.

[8] B. H. Bloom, Space-time trade-offs in hash coding with allowable errors, Comm.
ACM 13 (7) (1970) 422–426.

[9] D. M. Sunday, A very fast substring search algorithm, Comm. ACM 33 (8) (1990)
132–142.

24

[10] A. Apostolico, R. Giancarlo, The Boyer-Moore-Galil string searching strategies
revisited, SIAM J. Comput. 15 (1) (1986) 98–105.

[11] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski,
W. Rytter, Speeding up two string-matching algorithms, Algorithmica 12 (4/5) (1994)
247–267.

[12] L. Colussi, Fastest pattern matching in strings, Journal of Algorithms 16 (2) (1994)
163–189.

[13] T. Lecroq, A variation on the Boyer–Moore algorithm, Theoretical Computer Science
92 (1992) 119–144.

[14] M. E. Davis, Forward and reverse Boyer–Moore string searching of multilingual text
having a defined collation order, U.S. Patent 5,440,482, assigned on August 8, 1995 to
Taligent, Inc.

[15] L. Fan, P. Cao, J. Almeida, A. Z. Broder, Summary cache: a scalable wide-area Web
cache sharing protocol, IEEE/ACM Transactions on Networking 8 (3) (2000) 281–
293.

[16] G. Birkhoff, Lattice Theory, third (new) Edition, Vol. XXV of AMS Colloquium
Publications, American Mathematical Society, 1970.

[17] P. Flajolet, G. N. Martin, Probabilistic counting algorithms for data base applications,
J. Comput. System Sci. 31 (2).

[18] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, L. Trevisan, Counting distinct
elements in a data stream, Lecture Notes in Computer Science 2483.

25

