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Abstract. In the study of the behavior of centrality measures with re-
spect to network modifications, score monotonicity means that adding an
arc increases the centrality score of the target of the arc; rank monotonic-
ity means that adding an arc improves the importance of the target of the
arc relative to the remaining nodes. It is known [8,7] that score and rank
monotonicity hold in directed graphs for almost all the classical central-
ity measures. In undirected graphs one expects that the corresponding
properties (where both endpoints of the new edge enjoy the increase in
score/rank) hold when adding a new edge. However, recent results [6]
have shown that in undirected networks this is not true: for many cen-
trality measures, it is possible to find situations where adding an edge
reduces the rank of one of its two endpoints. In this paper we introduce a
weaker condition for undirected networks, semi-monotonicity, in which
just one of the endpoints of a new edge is required to enjoy score or
rank monotonicity. We show that this condition is satisfied by closeness
and betweenness centrality, and that harmonic centrality satisfies it in
an even stronger sense.

1 Introduction and Definitions

In this paper we discuss the behavior of centrality measures in undirected net-
works after the addition of a new edge. In particular, we are interested in the
following question: if a new edge is added to a network, does the importance of
at least one of its two endpoints increase? This question was left open in [6],
where the authors proved that for many centrality measures it is possible to find
situations where adding an edge reduces the rank of one of its two endpoints.
Note that these results are in jarring contrast with the corresponding properties
for directed networks, where it is known [8,7] that score and rank monotonicity
hold for almost all centrality measures.

Formally, in this paper we introduce semi-monotonicity, a weaker condition
than monotonicity for undirected networks in which we require that at least
one endpoint of the new edge enjoys monotonicity. Score semi-monotonicity, in
particular, means that adding a new edge increases the score of at least one of
the two endpoints:

Definition 1 (Score semi-monotonicity). Given an undirected graph G, a
centrality c is said to be score semi-monotone on G iff for every pair of non-



2 Paolo Boldi, Davide D’Ascenzo, Flavio Furia, and Sebastiano Vigna

adjacent vertices x and y we have that

cG(x) < cG′(x) or cG(y) < cG′(y),

where G′ is the graph obtained adding the edge x— y to G. We say that c is
score semi-monotone on a set of graphs iff it is score semi-monotone on all the
graphs from the set.

As we already know from the directed case, a score increase does not im-
ply that the rank relations between the two vertices involved in the new edge
and the other vertices in the network remain unchanged. For this reason, rank
monotonicity was introduced, where we require that every vertex that used to
be dominated is still dominated after the addition of the new edge. Formally,
the request for at least one of the two endpoints can be expressed as follows:

Definition 2 (Rank semi-monotonicity). Given an undirected graph G, a
centrality c is said to be rank semi-monotone on G iff for every pair of non-
adjacent vertices x and y at least one of the following two statements holds:

– for all vertices z ̸= x, y:

cG(z) < cG(x) ⇒ cG′(z) < cG′(x) and

cG(z) = cG(x) ⇒ cG′(z) ≤ cG′(x),

– for all vertices z ̸= x, y:

cG(z) < cG(y) ⇒ cG′(z) < cG′(y) and

cG(z) = cG(y) ⇒ cG′(z) ≤ cG′(y),

where G′ is the graph obtained adding the edge x— y to G. We say that c is
rank semi-monotone on a set of graphs iff it is rank semi-monotone on all the
graphs from the set.

In particular, we say that c is rank semi-monotone at x if the first state-
ment holds, and rank semi-monotone at y if the second statement holds (if both
statements hold, c is rank monotone).

Definition 3 (Strict rank semi-monotonicity). Given an undirected graph
G, a centrality c is said to be strictly rank semi-monotone on G iff for every pair
of non-adjacent vertices x and y at least one of the following two statements
holds:

– for all vertices z ̸= x, y: cG(z) ≤ cG(x) ⇒ cG′(z) < cG′(x),
– for all vertices z ̸= x, y: cG(z) ≤ cG(y) ⇒ cG′(z) < cG′(y),

where G′ is the graph obtained adding the edge x— y to G. We say that c
is strictly rank semi-monotone on a set of graphs iff it is strictly rank semi-
monotone on all the graphs from the set.
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Again, we say that it is strictly rank semi-monotone at x if the first statement
holds, and strictly rank semi-monotone at y if the second statement holds (if both
statements hold, c is strictly rank monotone).

In the rest of the paper, we assume that we are given an undirected connected
graph G, and two non-adjacent vertices x, y ∈ NG; G

′ will be the graph obtained
by adding the edge x— y to G. From now on, duv will refer to the distance (i.e.,
the length of a shortest path) between u and v in G (i.e., before the x— y
addition), and d′uv will refer to the distance in G′ instead. In general, we will use
the prime symbol to refer to any property or function of G when translated to
G′.

2 Distances and Basins

Geometric centrality measures [8] depend only on distances between vertices.
In the next two sections we are going to prove new results about the semi-
monotonicity of two geometric centrality measures—closeness centrality [2,3]
and harmonic centrality [4,8]. To understand the semi-monotonic behavior of
these centrality measures, we introduce a key notion:

Definition 4 (Basin). Given an undirected graph G and two non-adjacent ver-
tices x and y we define the basin of x (with respect to y) Kxy and the basin of
y (with respect to x) Kyx as

Kxy :={u ∈ NG | dux ≤ duy}
Kyx :={u ∈ NG | duy ≤ dux}

That is, the basin of x contains those vertices that are not farther from x than
from y: see Figure 1 for an example. Note that the vertices that are equidistant
from x and y are included in both basins, and the score of such vertices cannot
change in any geometric centrality when adding the edge x— y.

Let us consider the following property:

Definition 5 (Basin dominance). A centrality c is said to be basin dominant
on an undirected graph G iff for every pair of non-adjacent vertices x and y we
have that

c′(u)− c(u) ≤ c′(x)− c(x) for every u ∈ Kxy, u ̸= x

c′(v)− c(v) ≤ c′(y)− c(y) for every v ∈ Kyx, v ̸= y.
(1)

It is strictly basin dominant iff the same conditions are satisfied, but inequalities
(1) hold with the < sign.

Intuitively, basin dominance means that the increase in score of x and y is at
least as large as (or larger than, in the strict case) the increase in score of all
other nodes in their respective basin.

The following theorems will be used throughout the paper:
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x

y

Fig. 1. An undirected graph G, with Kxy (the basin of x w.r.t. y) shown in red and
Kyx (the basin of y w.r.t. x) in blue.

Theorem 1. If a centrality measure is strictly basin dominant on a graph then
it is strictly rank semi-monotone on the same graph.

Proof. Let c be strictly basin dominant, and let us assume by contradiction that
c is not strictly rank semi-monotone. This implies that we should be able to find
u, v such that: 

c(x) ≥ c(v)

c(y) ≥ c(u)

c′(v) ≥ c′(x)

c′(u) ≥ c′(y).

(2)

As a consequence of (2), c′(v)−c(v) ≥ c′(x)−c(x) and c′(u)−c(u) ≥ c′(y)−c(y),
which by the assumption of strict basin dominance imply v ̸∈ Kxy and u ̸∈ Kyx.
Therefore v ∈ Kyx and u ∈ Kxy. But then again using strict basin dominance and
(2) we have c′(y)−c(y) > c′(v)−c(v) ≥ c′(x)−c(x) > c′(u)−c(u) ≥ c′(y)−c(y),
a contradiction. ⊓⊔

For the non-strict case, a similar result holds:

Theorem 2. If a centrality measure is basin dominant on a graph then it is
rank semi-monotone on the same graph.

Proof. Let c be basin dominant, and let us assume by contradiction that c is not
rank semi-monotone. This implies that we should be able to find u, v satisfying
one of the following four sets of inequalities:

c(x) > c(v)

c(y) > c(u)

c′(v) ≥ c′(x)

c′(u) ≥ c′(y)


c(x) = c(v)

c(y) > c(u)

c′(v) > c′(x)

c′(u) ≥ c′(y)


c(x) > c(v)

c(y) = c(u)

c′(v) ≥ c′(x)

c′(u) > c′(y)


c(x) = c(v)

c(y) = c(u)

c′(v) > c′(x)

c′(u) > c′(y).

(3)
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The proof is similar to the strict case. In all sets of inequalities we have c′(v)−
c(v) > c′(x) − c(x) and c′(u) − c(u) > c′(y) − (y), which by the assumption of
basin dominance imply v ̸∈ Kxy and u ̸∈ Kyx. Therefore v ∈ Kyx and u ∈ Kxy.
Using basin dominance and (3), in all cases we have c′(y)− c(y) ≥ c′(v)− c(v) >
c′(x)− c(x) ≥ c′(u)− c(u) > c′(y)− c(y), a contradiction. ⊓⊔

3 Closeness Centrality

Closeness centrality [2,3] was shown to be score monotone but not rank monotone
on connected undirected networks [6]. In the latter paper, it was left open the
problem of whether closeness was (in our terminology) rank semi-monotone or
not. In the rest of this section, we will solve this open problem by showing that
closeness is in fact rank semi-monotone, but not in strict form.

Recall that, given an undirected connected graph G = (NG, AG), the periph-
erality of a vertex u ∈ NG is the sum of the distances from u to all the other
vertices of G:

p(u) =
∑

v∈NG

duv.

The closeness centrality of u is just the reciprocal of its peripherality:

c(u) =
1

p(u)
.

Consistently with the previous notation, we will use p(u) for the peripherality
of u in G, and p′(u) for the peripherality of u in G′.

y x

z

u

dyz
dxz

duz

dxy

dux

Fig. 2. Path labels represent the distance between the two endpoints. The dashed edge
is the x— y edge that we add to G, obtaining G′.

We have that:

Lemma 1. Closeness centrality is basin dominant on connected undirected graphs.

Proof. We first show that for every vertex u ∈ Kxy and for every z ̸= u, x:

duz − d′uz ≤ dxz − d′xz. (4)
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Then, the result follows by adding both sides for all z (as for z = u or z =
x the inequality trivializes) and using the fact that closeness is reciprocal to
peripherality. To prove (4) we consider two cases (see Figure 2):

– if d′uz = duz then the inequality trivially holds (because dxz ≥ d′xz always);

– if d′uz < duz then d′uz = dux + 1 + dyz < duz and d′xz = dyz + 1. Using
duz ≤ dux + dxz from the triangle inequality we have

duz − d′uz = duz − (dux + 1 + dyz) ≤
(dux + dxz)− (dux + 1 + dyz) = dxz − (dyz + 1) = dxz − d′xz.

⊓⊔

This lemma is the undirected version of Lemma 2 in [7] (provided that in the
latter you sum the inequality in the statement over all nodes w): it is interesting
to observe that in the directed case the inequality holds for all u’s, while here
it holds only within the basin.

Applying Lemma 1 and using Theorem 2, we obtain that:

Theorem 3. Closeness centrality is rank semi-monotone on connected undi-
rected graphs.

Interestingly, and regardless of their initial score, we can always tell which of
the two endpoints of the edge x— y will have smaller peripherality (i.e., higher
centrality) in G′. In fact:

Lemma 2. The following property holds:

p′(x)− p′(y) = |Kyx| − |Kxy|.

Proof. We can write the peripherality of x and y in G′ as

p′(x) =
∑

u∈Kxy

dux +
∑

u∈Kyx

(1 + duy)−
∑

u∈Kxy∩Kyx

(1 + duy)

p′(y) =
∑

u∈Kxy

(1 + dux) +
∑

u∈Kyx

duy −
∑

u∈Kxy∩Kyx

(1 + dux).

Note that for each u ∈ Kxy ∩Kyx we have dux = duy. Computing the difference
between the two expressions gives the result. ⊓⊔

It is not hard to build a graph G where x has a smaller basin than y but a
greater score: Lemma 2 tells us that y becomes more central than x in G′, due
to having a greater basin.

We conclude this section by showing that:

Theorem 4. Closeness centrality is not strictly rank semi-monotone on (an
infinite family of) connected undirected graphs.
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y x

u

w
...

k k + 4

Fig. 3. A counterexample to strict rank semi-monotonicity for closeness centrality. For
all k ≥ 10, u and x have the same score before and after the addition of the edge x— y.
Moreover, u has the same score of y (or smaller) before the addition, but a higher score
after the addition, breaking strict rank semi-monotonicity.

Proof. Consider the graphs in Figure 3, where u ∈ Kxy. This is an infinite family
of graphs with a parameter k which controls the sizes of the two stars around
vertices w and y. Computing the peripheralities of u, x and y before and after
the addition of x— y, we obtain

p(u) = 2 · (k + 4) + 4 · k + 13 p′(u) = 2 · (k + 4) + 3 · k + 12

p(x) = 3 · (k + 4) + 3 · k + 9 p′(x) = 3 · (k + 4) + 2 · k + 8

p(y) = 4 · (k + 4) + k + 15 p′(y) = 4 · (k + 4) + k + 12.

For all k ≥ 10, we have that

p(x) = p(u), p′(x) = p′(u), p(y) ≤ p(u), p′(y) > p′(u),

showing that closeness is not semi-monotone at y (because y used to be at least
as central as u, but it is less central after the addition of the edge) and not
strictly rank semi-monotone at x (it is always as central as x, before and after
adding the edge). ⊓⊔

4 Harmonic Centrality

Harmonic centrality [4] solves the issue of unreachable vertices in closeness cen-
trality. In particular, if we assume ∞−1 = 0, we can define it as

h(u) =
∑

v∈NG\{u}

1

duv
,

so that unreachable vertices have a null impact on the summation and, thus, on
the final centrality score of the node. Being a geometric measure, it is trivially
score monotone but not rank monotone, as shown in [6], where the same coun-
terexample disproving rank monotonicity for closeness centrality also shows that
harmonic centrality fails at satisfying this axiom.
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Lemma 3. Harmonic centrality is strictly basin dominant on connected undi-
rected graphs.

Proof. We first show that for every vertex u ∈ Kxy and for every z ̸= u, x:

1

d′uz
− 1

duz
≤ 1

d′xz
− 1

dxz
. (5)

Then, the result follows by adding both sides for all z. Note that the unique
term in h(u) and h′(u) (i.e., when z = x) is equal to the unique term in h(x)
and h′(x) (i.e., when z = u), and they are both equal to 0. Also, we remark that
(5) holds with a strict inequality at least in one case, i.e., when z = y, since
d′xy < dxy always.

We consider two cases:

– if d′uz = duz then the inequality trivially holds (because d′xz ≤ dxz always);
– if d′uz < duz then d′uz = dux + 1 + dyz < duz and d′xz = dyz + 1. Using

duz ≤ dux + dxz from the triangle inequality we have

1

d′uz
− 1

duz
−

(
1

d′xz
− 1

dxz

)
=

1

dux + 1 + dyz
− 1

duz
−

(
1

dyz + 1
− 1

dxz

)

=
(dyz + 1)− (dux + 1 + dyz)

(dux + 1 + dyz)(dyz + 1)
+

duz − dxz
duzdxz

= − dux
(dux + 1 + dyz)(dyz + 1)

+
duz − dxz
duzdxz

< − dux
duzdxz

+
(dux + dxz)− dxz

duzdxz
= 0,

which proves the inequality.
⊓⊔

Using Lemma 3 and Theorem 1, we obtain that:

Theorem 5. Harmonic centrality is strictly rank semi-monotone on connected
undirected graphs.

The stronger result we can give for harmonic centrality should be compared to
the fact that on strongly connected graphs harmonic centrality is strictly rank
monotone, whereas closeness centrality is just rank monotone [6].

5 Betweenness Centrality

Betweenness centrality [1,9] focuses not only on the length of shortest paths, but
also on how many of them involve a given node, trying to estimate the amount
of flow passing through nodes in a network. Note that betweenness is not a
geometric measure.
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Formally, if we call σvw the number of shortest paths between two vertices
v and w and σvw(u) the number of such paths passing through u, then we can
define the betweenness centrality of a vertex u ∈ NG as

b(u) =
∑

i,j ̸=u,
σij>0

σij(u)

σij
.

In the following, we let NG(u) denote the set of neighbors of u in G, and
G[u] the subgraph of G induced by NG(u) (sometimes called the ego network of
u). As in the previous section, we denote with σ and σ′ the number of shortest
paths before and after the addition of an edge x— y, and with b and b′ the
betweenness centrality before and after the addition of the edge.

We know from [6] that this centrality measure is neither rank nor score
monotone. Nonetheless, we can show that the betweenness centrality of two
vertices can never decrease after we link them with a new edge. In fact:

Lemma 4. The following properties hold:

σ′
ij(x)

σ′
ij

− σij(x)

σij
≥ 0 for all i, j ̸= x.

As a consequence, b′(x) ≥ b(x).

Proof. For all i, j ∈ NG such that i, j ̸= x, let us call px (px, respectively) the
number of shortest paths between i and j passing (not passing, resp.) through
x. We have to show that, for each such pair i, j ̸= x, the following holds:

σ′
ij(x)

σ′
ij

− σij(x)

σij
=

p′x
p′x + p′x

−
px

px + px
≥ 0. (6)

Summing over all i, j ̸= x proves the second part of the statement.
To show that (6) is indeed true we consider two cases:

– d′ij < dij , meaning that in G′ all the shortest paths i∼j pass through the
edge x— y (in particular through x). Thus, we obtain:

1−
px

px + px
≥ 0,

which is clearly true, since the second term of the left side of the inequality
is a value between 0 and 1.

– d′ij = dij , which implies that p′x = px and p′x ≥ px. We express p′x as px +α
with α ≥ 0, obtaining:

px + α

px + α+ px
−

px
px + px

=
p2x + pxpx + αpx + αpx − (p2x + αpx + pxpx)

(px + α+ px)(px + px)
=

=
αpx

(px + α+ px)(px + px)
≥ 0,

which is again true, concluding the proof. ⊓⊔
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Incidentally, we can always tell if the betweenness centrality of a vertex is
zero without actually computing it. In fact,

Lemma 5. Let G be a connected undirected graph and u ∈ NG. Then:

b(u) = 0 ⇐⇒ G[u] is a clique.

Proof. If b(u) = 0 no shortest paths are passing through u: but then any two
neighbors of u must be adjacent (or otherwise they would have distance 2, and
the path through u has length 2). Conversely, suppose that G[u] is a clique and
let i, j ̸= u. A path from i to j cannot involve u, otherwise it would touch two
neighbors of u, say i′, j′, and we might shorten it by skipping u and taking the
i′ — j′ edge instead of i′ —u— j′. ⊓⊔

x

yu

Fig. 4. Simple counterexample for score semi-monotonicity and strict rank semi-
monotonicity for betweenness centrality. The dashed edge is the x— y edge that we
add to G, obtaining G′. The betweenness score of vertices x, y and u is 0 both in G
and G′.

As a consequence, and differently from geometric measures, we can show that

Theorem 6. Betweenness centrality is not score semi-monotone on (an infinite
family of) connected undirected graphs.

Proof. Consider a graph G such that G[x] and G[y] are cliques and moreover,
NG(x) = NG(y), that is, x and y have the same neighborhood in G (see Figure 4
for an example). Then, by Lemma 5 we know that b(x) = b(y) = 0. It is easy to
observe that G′[x] and G′[y] are still cliques, hence we can use the same lemma
and say that b′(x) = b′(y) = 0, meaning that the addition of the x— y leaves
the score of both the endpoints unchanged. ⊓⊔

Moreover, we can say that

Theorem 7. Betweenness centrality is not strictly rank semi-monotone on (an
infinite family of) connected undirected graphs.
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Proof. Consider a graph G with three vertices x, y and u adjacent to a clique, but
with x, y, and u not adjacent to each other, as in Figure 4. Then, by Lemma 5
we know that b(x) = b(y) = b(u) = 0; if we add the edge x— y to G, obtaining
G′, we also have b′(x) = b′(y) = b′(u) = 0 by the same lemma. ⊓⊔

We are now going to show that, somehow unexpectedly, betweenness cen-
trality is rank semi-monotone on connected undirected graphs. In fact, we show
that it enjoys the same dominance property of closeness centrality, in spite of
being a non-geometric measure:

Lemma 6. Betweenness centrality is basin dominant on connected undirected
graphs.

Proof. Let us call ∆z = b′(z) − b(z) the score difference for a vertex z ∈ NG,
and for every pair of nodes i, j (with i ̸= j) let also

∆z(i, j) =
σ′
ij(z)

σ′
ij

− σij(z)

σij
.

Obviously

∆z =
∑
i,j ̸=z

∆z(i, j).

We want to show that ∆u ≤ ∆x for every u ∈ Kxy. We do this by analyzing the
summands ∆u(i, j) and ∆x(i, j) separately. For reasons of space, the remaining
part of the proof appears only in the full version available on arXiv [5]. ⊓⊔

Hence, applying Theorem 2 with Lemma 6 we have that:

Theorem 8. Betweenness centrality is rank semi-monotone on connected undi-
rected graphs.

6 Conclusions and Future Work

Table 1 summarizes the results of this paper along with those of [7,6,8]. For all
the negative results, we have an infinite family of counterexamples (for instance,
there are infinitely many graphs on which closeness is shown to be not strictly
semi-monotone).

The notion of basin dominance turned out to be the key idea in all proofs
of semi-monotonicity. It would be interesting to investigate whether basin dom-
inance applies to other geometric measures, or even other centrality measures
based on shortest paths, as in that case one gets immediately rank semi-monoto-
nicity.

Proving or disproving score and (strict) rank semi-monotonicity for other
measures (in particular, for the spectral ones) remains an open problem.
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undirected directed [7,8]
score rank score rank

Closeness monotone [6] semi-monotone monotone monotone
Harmonic centrality monotone [6] strictly semi-mon. monotone strictly monotone
Betweenness not semi-monotone semi-monotone not monotone not monotone

Table 1. Summary of the results about monotonicity obtained in this paper (in bold-
face) and in [7,6,8]. All results are about (strongly) connected graphs.
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