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Abstract
We prove the existence of a “universal” synchronous self-
stabilizing protocol, that is, a protocol that allows a distributed
system to stabilize to a desired nonreactive behaviour (as long as
a protocol stabilizing to that behaviour exists). Previous proposals
required drastic increases in asymmetry and knowledge to work,
whereas our protocol does not use any additional knowledge, and
does not require more symmetry-breaking conditions than avail-
able; thus, it is also stabilizing with respect to dynamic changes
in the topology. We prove an optimal quiescence time n +D for
a synchronous network of n processors and diameter D; the pro-
tocol can be made finite state with a negligible loss in quiescence
time. Moreover, an optimal D + 1 protocol is given for the case
of unique identifiers. As a consequence, we provide an effective
proof technique that allows to show whether self-stabilization to
a certain behaviour is possible under a wide range of models.
Keywords: self-stabilization, anonymous networks, graph fibra-
tions, synchronous systems.

1 Introduction
A system is self-stabilizing if, for every initial state, after a fi-
nite number of steps it cannot deviate from a specified behaviour.
Self-stabilization of distributed systems was introduced by Dijk-
stra in his celebrated paper [13], and has become since an impor-
tant framework for the study of fault-tolerant computations.

The adversarial choice of the initial state makes it extremely
difficult to devise self-stabilizing protocols. To overcome this
problem, there have been some recent attempts in the literature to
build “general” self-stabilizing protocols (also called extensions),
namely, superimposed distributed protocols that make the under-
lying behaviour self-stabilizing, or to solve classical problems
(election, spanning tree construction, etc.) in a self-stabilizing
way. For instance, Katz and Perry [19] propose a combination of
self-stabilizing global snapshots and resets to this purpose; Afek,
Kutten and Yung [4] and Awerbuch, Patt–Shamir and Varghese [6]
use local conditions to initiate a global or a local correction; Awer-
buch and Varghese [7] use a resychronizer to restart a non-self-
stabilizing protocol until stabilization; Afek and Dolev [2] collect
pyramids of views of the system to detect incoherences and cor-
rect the system behaviour; in a different vein, Dolev, Israeli and
Moran [15, 17] use randomization to assign unique identifiers.

However, all previously mentioned methods require additional
asymmetry and knowledge: the self-stabilizing extension of [19]
requires a distinct processor and knowledge of the number of pro-

∗Part of the results of this paper appeared in the Proceedings of the 3rd Work-
shop on Self–Stabilizing Systems, Santa Barbara, California, 1997 [11].

cessors in the network, which may not be available. The pro-
tocol described in [4] needs unique identifiers or the power of
randomization, whereas [6] requires the ability to distinguish in-
cident links. The resynchronizer [7] needs point-to-point com-
munication and a bound on the diameter to work. The tecniques
described in [2] require the knowledge of the topology of the net-
work. In all the above cases, bidirectionality of the links is an
essential feature.

It is a major open problem (if only of theoretical importance)
to establish (or prove impossible) the existence of a universal de-
terministic self-stabilizing protocol: by “universal” we mean that
such a protocol should be able to self-stabilize to any behaviour
for which a self-stabilizing protocol exists, under given conditions
of asymmetry and knowledge. In particular, the protocol should
be uniform, that is, the same for all processors, unless the presence
of (possibly unique) identifiers is explicitly assumed.

In this paper we prove a surprising and apparently unnatural
result, viz., that such a protocol exists for synchronous dynamic1

networks, and that it has tight quiescence time2 n + D, where n
is the number of processors in the system and D its diameter. It
is possible to modify the protocol so that it becomes finite state,
with a negligible loss in quiescence time.

A widely accepted tenet about self-stabilization is that it is
a difficult coordination problem, independently of the resources
available. We show that, on the contrary, unless strong bounds
are imposed on resources and quiescence time, the coordination
part of the problem is trivial (at least in the synchronous case), in
the sense that it can be completely solved once for all (there is a
universal protocol for it).

The model we use is very general, as a network is just a di-
rected graph (possibly with parallel arcs and loops) coloured on
the nodes and on the arcs. The former colouring can be used to
encode identity information, whereas the latter represents the de-
gree of port awareness of the network (i.e., the ability of each
processor to distinguish among its incident links). Our results do
not make any assumption on the particular class of networks un-
der study: in particular, we assume neither bidirectionality (and
this is a major difference with existing literature, as a processor
cannot communicate immediately with its in-neighbours), nor a
particular distribution of identifiers (such as unique identifiers, or
a unique distinguished processor).

On the other hand, we use a synchronous activation model, in
which all processors take a step at the same time. Moreover, at
each step the new state of a processor can depend arbitrarily on
the states of its in-neighbours, so there is no bound on the amount

1With dynamic we mean that our protocols tolerate modifications to the net-
work topology, such as insertion or deletion of processors and links.

2The quiescence time of a self-stabilizing protocol is the maximum number of
steps required to restart a correct behaviour after a transient fault.
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of information exchanged along the links.
Our protocols tolerate dynamic changes in the network struc-

ture: at any time an adversary can change the topology of the
network, or corrupt the identifiers of the processors, as long as the
resulting network fits the knowledge assumed (the last character-
istic, in particular, was not—as far as we know—achieved by any
protocol). After the quiescence time, the desired behaviour will
restart.

To prove our results, we exploit a mix of classical techniques
for self-stabilization, and a series of results from the theory of
anonymous networks. A network is anonymous3 if all proces-
sors are identical and start from the same initial state; these as-
sumptions make them indistinguishable. The systematic study of
such networks was initiated by Angluin [5], and continued by Ya-
mashita and Kameda; there is now a rather complete characteriza-
tion of what is computable on such networks for several problems,
such as election [22, 8] and function computation [21, 23, 10].
In fact, these characterizations work even if the processors have
identifiers, as long as the initial states are the same, and this ob-
servation is the key to our proofs.

There is clearly a link between anonymous networks and self-
stabilizing systems, since one of the possible choices for an ad-
versary is to start all processors from the same state. Thus, in a
sense that we will make precise, there is no way a network can
self-stabilize to something that it cannot compute anonymously.
We obtain our results by turning the classical algorithms from the
theory of anonymous networks into self-stabilizing protocols.

The (nonreactive) behaviours we consider are modeled by a
suffix-closed set of infinite sequences of (excerpts of) global
states; the set depends on the network, so problems like topol-
ogy reconstruction can be specified. The definitions of self-
stabilization we have adopted here4 requires that in finite time the
behaviour of the network belongs to the selected set.

Our results are mainly of theoretical interest, because of
the large amount of information exchanged by the processors.
Nonetheless, they provide for the first time general upper and
lower bounds for self-stabilization. Moreover, we obtain a char-
acterization of the behaviours to which self-stabilization is possi-
ble. As a result, we provide a proof technique that allows to show
whether self-stabilization to a certain behaviour is possible under
a wide range of models. Moreover, the proof technique is effec-
tive: if the class of networks under examination is finite, and the
desired behaviour is finite state, then the technique turns into a
recursive procedure that provides either a self-stabilizing protocol
for the behaviour, or a counterexample.

In Section 2 we discuss informally a simple possibility problem
whose solution will guide the development of the paper. In Sec-
tion 3 we define the basics of the model of computation. Then,
in Section 4 we discuss briefly some known notions from the the-
ory of anonymous networks, in particular that of view, and we
show how to make the view construction self-stabilizing. On the

3The terms uniform and anonymous are often used as synonyms in the litera-
ture. However, we propose to use the former when all processors are identically
programmed (said otherwise, they have no identifiers), and the latter when in ad-
dition all processors are forced to start from the same state; we think that it is
important to tell potential from actual indistinguishability.

4There seems to be a certain disagreement in the literature about the exact
definition of self-stabilization. For instance, [19], [12] and [4] use different and
increasingly more restrictive definitions.

other side, in Section 5 we provide corresponding negative results
by stating in graph-theoretic terms some necessary conditions for
self-stabilization; this conditions turn out to match our positive
results about self-stabilizing view construction, giving the first
characterization of attainable behaviours and solving the guid-
ing problem. Section 6 delves into the details of the proof that
the self-stabilizing view construction protocol can be made finite
state without losing in generality, thus providing another charac-
terization, this time for finite-state attainable behaviours. Finally,
in Section 7 we approach the very special, yet extremely relevant,
case of networks with unique identifiers, showing a fundamental
gap with the general case, as the bounds for this case (which are
still tight) depend only on the diameter and not on the number of
processors. We conclude the paper with a section of examples,
which show how our theory allows one to characterize exactly the
knowledge necessary to perform a certain task; moreover, we de-
scribe informally the protocols obtained specializing the universal
ones.

2 A guiding example

Suppose one is interested in determining whether there exist a
self-stabilizing leader election protocol that works in the class
of networks depicted in Figure 1. In other words, you should
produce a synchronous uniform protocol (i.e., the program must
be the same for all processors) that self-stabilizes to an election
global state; the protocol must work on every network of the class
(informally speaking: the processors just know that they live in
one of the networks depicted, but they know neither which one
exactly, nor which is their position in the network). Questions of

Figure 1: Can you do election here?

this kind have been often considered in the literature for specific
problems, specific models and specific network classes (a classic
result says, for instance, that under a serialized activation election
is possible in rings of prime size). As stated in the introduction,
the main goal of this paper is to “factor out” the common part of
these results, and give a completely general criterion to establish
such (im)possibility results. We shall use the example depicted in
Figure 1 as a case study.
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3 Basic definitions and preliminaries

3.1 Graph-theoretical definitions
A (directed) (multi)graph G is given by a nonempty set NG =
{1, 2, . . . , nG} of nodes and a set AG of arcs, and by two func-
tions sG, tG : AG → NG that specify the source and the tar-
get of each arc. A (arc- and node-)coloured graph (with set
of colours C) is a graph endowed with a colouring function
γ : NG + AG → C (we denote with + disjoint union). We
write i

a→ j when the arc a has source i and target j, and i → j
when i

a→ j for some a ∈ AG; we often use the shorthand i � j
for “i → j or i = j”. We denote with dG(i, j) the distance be-
tween two nodes i and j of a graph G, and with DG its diameter.
Subscripts will be dropped whenever no confusion is possible.

A (in-directed) tree is a graph5 with a selected node, the root,
and such that every node has exactly one directed path to the root.
If T is a tree, we write h(T ) for its height (the length of the longest
directed path). In every tree we consider in this paper, all maximal
paths have length equal to the height. We write T � k for the tree
T truncated at height k, that is, we eliminate all nodes at distance
greater than k from the root.

Trees are partially ordered6 by prefix, that is, T ≤ U iff
T ∼= U � h(T ), where ∼= denotes isomorphism; this partial or-
der is augmented with a bottom element ⊥, with h(⊥) = −1 by
definition (so h is strictly monotonic). The infimum in this partial
order, denoted by ∧, is the tallest common prefix (or ⊥ if no com-
mon prefix exists). The supremum between T and U exists iff T
and U are comparable.

We remark a nontrivial property relating order and height: if
T = U � k then

h(T ∧ V ) = min{h(U ∧ V ), h(T )}
= min{h(U ∧ V ), k}. (1)

3.2 The model
In the following, by a network we shall always mean a strongly
connected coloured graph. The nodes of such a graph are called
processors.

Computations of a network are defined by a state space and
a transition function specifying how a processor must change its
state when it is activated. The new state must depend, of course,
on the previous state, and on the states of the in-neighbours; the
latter are marked with the colours of the corresponding processor
and incoming arc (thus, e.g., if all incoming arcs have different
colours a processor can distinguish its in-neighbours, even if they
do not possess distinct colours). Moreover, the new state must
depend also on the colour given to the processor.7

For sake of simplicity, we discuss the case C = {∗}, so that
arcs and nodes are in fact not coloured; the introduction of colours

5Since we need to manage infinite trees too, we allow the node set of a tree to
be N.

6We are in fact considering trees up to isomorphism (technically ≤ is just a
preorder).

7Colours on the nodes act as identifiers, whereas colours on the arcs define
the communication model. Choosing a suitable γ we can encode properties such
as the presence of unique identifiers, distinguished outgoing/incoming links and
so on [8]. Note, however, that the importance of identifiers will appear only in
Section 7, where we shall exploit identifier uniqueness to improve our bounds.

makes no significant conceptual difference.
Formally, a protocol P is given by a set X of local states and

by a transition function

δ : X ×X⊕ → X,

where X⊕ is the set of finite multisets over X . Intuitively, the
new state of a processor depends on its previous state (the first
component of the Cartesian product) and on the states of its in-
neighbours (we must use multisets, as more than one in-neighbour
might be in the same state).

A global state (for n processors, with respect to the protocolP )
is a vector x ∈ Xn. A (synchronous) computation of the protocol
P on the network G (with n processors) is an infinite sequence of
global states x0, x1, x2, . . . such that for all t and i the state xt+1

i

is obtained by applying δ to xt
i and to the multiset of the xt

j , for
j → i.

3.3 Behaviours, predicates and classes of net-
works

Classes of networks specify knowledge: the larger the class, the
smaller the knowledge (the class of all networks corresponds to
no knowledge at all; a singleton to maximum knowledge). Com-
mon situations studied in the literature include the knowledge of
the whole network, of the underlying graph, of the number of pro-
cessors, or of some other graph-theoretical property. For instance,
if the only knowledge available is the number n of processors we
must specify a self-stabilizing protocol working on all networks
with n nodes.

Let C be a class of networks. A behaviour S for C on a set
Y is an assignment, for every G ∈ C , of a nonempty suffix-
closed set of infinite sequences8 SG ⊆ (Y nG)ω . A predicate is
a behaviour all whose sequences are constant; it can be identified
with an assignment, for all G ∈ C , of a set SG ⊆ Y nG .

For instance, the behaviour containing for each graph in C
the sequence 〈0, 0, . . . , 0〉, 〈1, 1, . . . , 1〉, 〈2, 2, . . . , 2〉, . . . and its
suffixes specifies a synchronized infinite-state clock, whereas the
predicate containing all tuples 〈b1, b2, . . . , bn〉, where exactly one
of the bi’s is nonzero, defines the well-known leader election
problem. Token circulation, topology reconstruction and so on
can be easily described in a similar way (see Section 8).

We say that C can self-stabilize to S iff there is a protocol P
with state space X × Y such that for every network G ∈ C there
is a T ∈ N with the property that for every computation

〈x0,y0〉, 〈x1,y1〉, 〈x2,y2〉, . . .
the sequence

yT ,yT+1,yT+2, . . .

is in SG. The smallest such T is called the quiescence time of P
on G, and it is denoted by TG. The self-stabilization is finite state
iff all computations of P on networks of C are ultimately peri-
odic; this condition is equivalent to saying that all computations
use a finite amount of memory (note that, however, state finiteness
does not imply that X is finite, but rather that only a finite part of
X is used in every computation)

8The set Y on which a behaviour is defined has no particular significance—it
is a just a set used to build allowed sequences.
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Usually, when studying self-stabilization in spite of dynamic
(run-time) changes of the network topology, one strengthens the
definitions above so to take into consideration this additional con-
straint. However, as we already mentioned, all protocols de-
scribed in this paper will not use any knowledge, except for that
provided by the class C . Thus, if the topology is modified so that
the resulting network still belongs to C , we can automatically
guarantee convergence to the desired behaviour (the quiescence
time will of course depend on the new topology). This point will
not need to be pursued hereafter.

4 Self-stabilizing view construction

A network is anonymous if all processors start from the same ini-
tial state and run the same program [5, 18, 22, 8, 21, 23, 10].
There is clearly a connection between the theory of anonymous
networks and self-stabilization: indeed, one possible choice for
the initial state is to set all processors to the same state, so, in a
sense, if you can do it in a self-stabilizing way then you can do it
anonymously.

The main goal of the first part of this paper is to show that the
implication above can be reversed, that is, if there are no bounds
on the amount of information exchanged by the processors, there
is essentially no advantage in being able to choose the initial local
state if all local states are forced to be equal. In other words, the
worst thing an adversary can do in choosing our initial state is to
set all processors to the same state.

4.1 Anonymous networks and views

A classical tool in the study of anonymous networks is the con-
cept of view, introduced for bidirectional networks in [22] and ex-
tended to the directed case in [8] (to be true, the concept of view
is already present in the seminal paper [5], partially disguised un-
der the mathematical notion of graph covering; a finite set, called
pyramid, of increasigly deep views decorated with states is also
used in [2] to detect inconsistencies in the system). The view of
a processor is a tree that gathers all the topological information
that the processor can obtain by exchanging information with its
neighbours.

More formally, the view of a processor i in the network G is an
in-tree G̃i built as follows:

• the nodes of G̃i are the (finite) paths of G ending in i, the
root of G̃i being the empty path;

• there is an arc from the node π to the node π′ if π is obtained
by adding an arc a at the beginning of π′.

The tree G̃i is always infinite if G is strongly connected and has at
least one arc, and there is a trivial anonymous protocol that allows
each processor to compute its own view truncated at any desired
depth. At step k + 1 of the protocol, each processor gathers from
its in-neighbours their views truncated at depth k, and combining
them it can compute its own view truncated at depth k + 1. The
start state is the one-node tree. An example of view construction
is given in Figure 2, where we show the first four steps of view
construction for the processors of a simple network.

The reason why views are important is that the state of a proces-
sor after k steps of any anonymous computation may only depend
on its view truncated at depth k. We will return to this property
later.

4.2 Making view construction into a self-
stabilizing protocol

In this section we are going to describe an infinite-state self-
stabilizing protocol that allows each processor to build its own
view at any desired depth. The main idea of our protocol is that a
processor should build its view gathering information from its in-
neighbours, as in the classical case; however, processors are inter-
ested in eliminating the “garbage” introduced by the arbitrariness
of the initial state: this aim is achieved by mitigating the amount
of new information introduced at each step.

Each processor i holds a tree Ti, whose value at time t we de-
note with T t

i , and which is to contain a truncation of the view
of i. We are interested in growing the correct levels of T t

i , that
is, T t

i ∧ G̃i. To describe our protocol, we set up the following
shorthands:

• We denote with St
i the tree obtained combining the trees T t

j ,
for j → i, following the definition of view. More precisely,
the root of St

i has one child for each arc a coming into i; the
corresponding subtree is T t

j , where j is the source of a. If
necessary, the resulting tree is truncated so that all maximal
paths have the same length: as a consequence, h

(
St
i ∧G̃i

) ≥
minj→i h

(
T t
j ∧ G̃j

)
+ 1.

• We set U t
i = St

i � h(T t
i ∧ St

i ) + 1. Note that U t
i is built by

taking from St
i one level more than the number of levels that

St
i shares with T t

i .

The classical anonymous view construction algorithm would just
set T t+1

i = St
i . However, to control the amount of new informa-

tion introduced, we will find it more fruitful to set T t+1
i = U t

i ,
that is, to truncate the new information at one level below the
maximum number of levels it shares with the old one.

We remark two useful facts about U t
i :

h
(
U t
i

) ≤ min
j�i

h
(
T t
j

)
+ 1 (2)

h
(
St
i ∧ G̃i

) ≥ h
(
U t
i ∧ G̃i

) ≥ min
j�i

h
(
T t
j ∧ G̃j

)
+ 1. (3)

The first statement depends trivially on the very definition of U t
i .

The second statement can be proved by noting that in case St
i ≤

T t
i , since U t

i = St
i we have

h
(
U t
i ∧ G̃i

)
= h

(
St
i ∧ G̃i

)
≥ min

j→i
h
(
T t
j ∧ G̃j

)
+ 1 ≥ min

j�i
h
(
T t
j ∧ G̃j

)
+ 1;

otherwise, observing that

h
(
St
i ∧ T t

i

) ≥ h
(
St
i ∧ T t

i ∧ G̃i
)

= min
{
h
(
St
i ∧ G̃i

)
, h

(
T t
i ∧ G̃i

)}
≥ min

{
min
j→i

h
(
T t
j ∧ G̃j

)
+ 1, h

(
T t
i ∧ G̃i

)}
,
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Figure 2: An example of view construction

as h preserves binary infima between comparable trees, we have

h
(
U t
i ∧ G̃i

)
= min

{
h
(
St
i ∧ G̃i

)
, h

(
U t
i

)}
= min

{
h
(
St
i ∧ G̃i

)
, h

(
St
i ∧ T t

i

)
+ 1

}
≥ min

{
min
j→i

h
(
T t
j ∧ G̃j

)
+ 1,

min
j→i

h
(
T t
j ∧ G̃j

)
+ 2,

h
(
T t
i ∧ G̃i

)
+ 1

}
= min

j�i
h
(
T t
j ∧ G̃j

)
+ 1,

using (1) and the definition of U t
i (assuming St

i �≤ T t
i ).

4.3 The infinite-state protocol
The protocol we use in the infinite-state case is extremely simple:

T t+1
i = U t

i (4)

Informally, each processor compares the candidate new view with
its own current view, finds the greatest k such that the two trees
truncated at depth k are the same, and then takes from the can-
didate new view just k + 1 levels. Thus, each processor trusts
the trees passed by its in-neighbours, but in a controlled way. A
graphical display of the updated rule is given in Figure 3.

k

k + 1T t
i

T t
j1

T t
j2 T t

j3

Figure 3: The infinite-state protocol update rule.

Inequality (3) will be the base for the proof of self-stabilization,
as it establishes that the number of correct levels of T t

i (i.e., the

height of T t
i ∧ G̃i) grows with time. Indeed, it is immediate to

prove the following

Lemma 1 For all t ≥ 0 we have mini h
(
T t+1
i ∧ G̃i

) ≥
mini h

(
T t
i ∧ G̃i

)
+ 1.

This lemma claims that the minimum number of correct levels
grows with time. But this growth is just half of what we need: it
is also necessary to show that at some time all trees will become
entirely correct. We will obtain this result proving that some trees
immediately become short (and correct), and that this property is
inherited by their out-neighbours; thus, correctness spreads to the
whole network in D steps. Since we shall use this proof technique
very frequently, we formalize it through the following

Proposition 1 Let x0, x1, . . . be a computation of some protocol
on G, t̄ ∈ N and f : X → N be a function such that for all
t ≥ t̄ we have f

(
xt+1
i

) ≤ minj�i f
(
xt
j

)
+ 1. Then f

(
xt
j

) ≤
mini f

(
xt̄
i

)
+ t− t̄ for all j and t ≥ t̄+D.

Proof. Let l be any processor such that f
(
xt̄
l

)
= mini f

(
xt̄
i

)
. We

prove by induction on d that for all j such that d(l, j) ≤ d and for
all t ≥ t̄+ d we have f

(
xt
j

) ≤ mini f
(
xt̄
i

)
+ t− t̄. The base case

(j = l) is a straightforward induction on t. On the other hand,
if d(l, j) = d + 1, then there is a j′ → j at distance d from l,
so by induction hypothesis f

(
xt
j′
) ≤ mini f

(
xt̄
i

)
+ t − t̄ for all

t ≥ t̄+ d, and finally, for t ≥ t̄+ d+ 1

f
(
xt
j

) ≤ min
i�j

f
(
xt−1
i

)
+ 1 ≤ f

(
xt−1
j′

)
+ 1

≤ min
i

f
(
xt̄
i

)
+ t− t̄.

We now come to the main proof of this section. The basic idea
is that, due to the update rule we adopted, the processor with the
minimum number of correct levels (i.e., with the most scrambled
information) will become correct at the first step.

Theorem 1 There exists an integer c such that after t > D steps
of protocol (4) all processors possess a correct truncation of their
own view of depth t+ c (i.e., T t

i = G̃i � (t+ c)).
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Proof. Let c = mini h
(
T 0
i ∧ G̃i

)
be the minimum correctness

level, and j be a node with minimum correctness (i.e., such that
h
(
T 0
j ∧ G̃j

)
= c). Since h

(
S0
j ∧ G̃j

)
> c by (3), necessarily

h
(
S0
j ∧ T 0

j

)
= c (otherwise T 0

j would share more than c levels
with G̃i); thus, after the first step, h

(
T 1
j

)
= c+ 1.

Since the tree height function h satisfies the hypotheses of
Proposition 1, and T 1

j has height c + 1, we have h
(
T t
i

) ≤ c + t

for all i and all t > D. On the other hand, c+ t ≤ h
(
T t
i ∧ G̃i

) ≤
h
(
T t
i

)
by Lemma 1, so for t > D we have h

(
T t
i

)
= c + t and

T t
i ≤ G̃i for all i, and the thesis follows.

Table 1 shows the first steps of an execution of the algorithm on
the network G of Figure 2: the table contains the value of T t

i at
each step. Observe that at step 3 all truncated views are correct.
Please ignore for the time being the last column.

5 Graph-theoretical characterizations of
attainable behaviours

In the previous section we have shown how to build processor
views in a self-stabilizing way. Thus, if we already know that our
desired behaviour just depends on (a truncation of) the view, we
can realize it via protocol (4).

On the other hand, the theory of anonymous networks tells us
that no protocol can attain a behaviour that does not depend ex-
clusively on the view, as we remarked informally in the previous
sections. Thus, in principle we have characterized mathematically
the attainable behaviours.

However, it is clear that this knowledge does not help us much
in solving automatically the problem stated in Section 2. More
importantly, we have no clue about how to turn our protocol into
a finite-state one. This is the reason why we are going to study
in much deeper detail the constraints on the behaviours of a self-
stabilizing network.

5.1 Graph fibrations and the Lifting lemma
Recall that a graph morphism f : G → H is given by a pair of
functions fN : NG → NH and fA : AG → AH that commute
with the source and target functions, that is, sH ◦ fA = fN ◦ sG
and tH ◦ fA = fN ◦ tG. (The subscripts will usually be dropped.)
In other words, a morphism maps nodes to nodes and arcs to arcs
in such a way to preserve the incidence relation.9

To express our combinatorial characterization of attainable be-
haviours, we shall exploit the notion of graph fibration [9]. A
fibration formalizes the idea that processors that are connected to
processors behaving in the same way will behave alike; it gen-
eralizes both the usage of graph coverings in Angluin’s original
paper [5] and the concept of similarity of processors introduced
in [18].

Definition 1 A fibration between (coloured) graphs G and B is a
morphism ϕ : G → B such that for each arc a ∈ AB and for each

9This is the only definition in this paper that should be modified to handle the
coloured case: one has to consider only morphisms that preserve colours on the
nodes and on the arcs. All the graph-theoretical ideas we introduce adapt smoothly
to this condition.

node i ∈ NG satisfying ϕ(i) = t(a) there is a unique arc ãi ∈ AG

(called the lifting of a at i) such that ϕ(ãi) = a and t(ãi) = i.

If ϕ : G → B is a fibration, B is called the base of the fibration.
We shall also say that G is fibred (over B). The fibre over a node
i ∈ NB is the set of nodes of G that are mapped to i, and will be
denoted by ϕ−1(i).

There is a very intuitive characterization of fibrations based on
the concept of local isomorphism. A fibrationϕ : G → B induces
an equivalence relation between the nodes of G, whose classes are
precisely the fibres of ϕ. When two nodes i and j are equivalent
(i.e., they are in the same fibre), there is a bijective correspon-
dence between arcs coming into i and arcs coming into j such
that the sources of any two related arcs are equivalent.

In Figure 4 we sketched a fibration between two graphs. Note
that, because of the lifting property described in Definition 1, all
black nodes have exactly two incoming arcs, one (the dotted arc)
going out of a white node, and one (the continuous arc) going out
of a grey node. In other words, the in-neighbour structure of all
black nodes is the same. The main raison d’être of fibrations is

ãi

fibre

a

t(a)

ϕ

B

G
i

Figure 4: A fibration.

that they allow to relate the behaviour of the same protocol on two
networks. To make this claim precise, we need some notation: if
ϕ : G → B is a fibration, and x is a global state of B, we can
obtain a global state xϕ of G by “lifting” the global state of B
along each fibre, that is, (xϕ)i = xϕ(i). Essentially, starting from
a global state of B we obtain a global state of G by copying the
state of a processor of B fibrewise.

Lemma 2 (Lifting lemma) Let ϕ : G → B be a fibration. Then,
for every protocol P and every computation x0, x1, . . . of P on
B,

(
x0

)ϕ,
(
x1

)ϕ, . . . is a computation of P on G.

Proof. Whenever a network is fibred onto another one, and pro-
cessors in the same fibre are in the same state as the processor
they are mapped to by the fibration, all processors in the same
fibre must behave identically. This happens because the local iso-
morphism property says that for any two processors i and j in
the same fibre, there is an arc terminating at j and starting from
a processor in the same fibre as k; moreover, this association is a
bijection between the arcs entering in i and j. Thus, the sequence
of local states of all processors in a fibre of ϕ are exactly the same,
and they are also equal to the sequence of states of the processor
they lie over.
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t T t
1 T t

2 T t
3 T t

4 B
(
T t
4

)
0

1

2

3 undefined

4 undefined

5

Table 1: An execution of the infinite-state algorithm on the network G of Figure 2.
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The above lemma suggests that if a network can be “collapsed”
by a fibration onto another one, then there are certain constraints
on the behaviours it can self-stabilize to. More precisely, we can
compute a sequence of lifted global states of G by computing a
sequence of global states of B, and then lift the result. In other
words, the computation of B “resumes” in a more compact way
the computation of G. Since a possible initial global state for G
is the one in which all processor have the same local state, we
cannot hope to self-stabilize to a behaviour that is not a lifting of
a behaviour of B.

This consideration may seem trivial when applied to a single
network, but it becomes more tricky when a whole class is in-
volved. Indeed, if two different networks G and H of the class are
fibred over a common base B, we must find a single behaviour of
B that, once lifted to G and H , will give in both cases a desired
behaviour.

The above observation is already sufficient to show that there
is no self-stabilizing protocol for election for the set of networks
given in Figure 1. Indeed, the two bottom networks have a com-
mon base, as shown by the labellings displayed in Figure 5 (the
reader can easily check that the labellings are indeed the node
components of two fibrations: for instance, every node with label
4 has two incoming arcs, one from a node with label 4 and one
from a node with label 3). We have already noticed that the only

1

1

1

2

3

3

4

4

1 1

1

2

2

3

4

4

G H

1 2 3 4

B

Figure 5: Two networks with a common base.

behaviours we can attain onG andH are liftings of the behaviours
of B. This means that election is impossible on the class {G,H }.
Indeed, we can only choose between four predicates on B, that is,
〈1, 0, 0, 0〉, 〈0, 1, 0, 0〉, 〈0, 0, 1, 0〉 and 〈0, 0, 0, 1〉, and all of them,
when lifted, do not give rise to a unique leader either on G or on
H . The main point to notice is that, as we shall see, election on
G or on H is possible. In other words, if the processors know
whether they live in G or H they can do self-stabilizing election,
but if this knowledge is denied, then self-stabilizing election be-
comes impossible (and, of course, is a fortiori impossible on the
whole class depicted in Figure 1).

The example shows that it is essential to find out which net-
works in a class are fibred onto a common base. The interesting
features of the synchronous model is that the search can be re-
duced to a particular kind of fibration, that collapses a network as
much as possible.

5.2 Minimum bases
We say that a graph G is fibration prime if every fibration from G
is an isomorphism, that is, G cannot be collapsed onto a smaller
network by a fibration10.

Theorem 2 ([9]) The following properties hold:

1. For every graph G there is exactly one fibration prime graph
Ĝ, called the minimum base of G, such that G is fibred onto
Ĝ.

2. If G and H have a common base B, then Ĝ ∼= Ĥ .

3. Let ϕ : G → Ĝ; then G̃i ∼= G̃j iff ϕ(i) = ϕ(j) (as a
consequence, distinct nodes of a fibration prime graph have
different views).

4. A fibration prime graph is uniquely characterized by the set
of views of its nodes.

There are many ways to build Ĝ. One is a partition set algo-
rithm [9], similar to the one used for finite-state automata mini-
mization. On the other hand, one can also take as nodes of Ĝ the
distinct views of G, and put an arc between two views if one view
is a first-level child of the second one. In Figure 6 we show a num-
ber of networks and the corresponding minimum bases. Again,
the node component of a minimal fibration is represented by num-
bering the nodes.

The fibrations from G to Ĝ are called minimal. There is usually
more than one minimal fibration, but they must all coincide on the
nodes by property (3) of Theorem 2, so we denote with µG one
of them when the map on the arcs is not relevant. For instance, in
Figure 5 the graph B is the minimum base of both G and H , that
is, Ĝ ∼= Ĥ ∼= B.

The previous theorem highlights the deep link between fibra-
tions and views: two processors have the same view if and only
if11 they lie in the same fibre of µG. Since we know by the Lifting
lemma that processors in the same fibre of a fibration cannot be-
have differently, this means that on the one hand, processors with
the same view will always be in the same state, and on the other
hand, if we can deduce Ĝ from a view we can use the Lifting
lemma to characterize the possible behaviours.

The fundamental fact we shall use intensively in all proofs is
that the above considerations, which involve infinite objects (iso-
morphism of infinite trees, and so on), can be described by means
of finite entities using the two following theorems:

Theorem 3 ([9]) Let G be a strongly connected graph and B a
fibration prime graph with minimum number of nodes satisfying
h
(
G̃i ∧ B̃j

) ≥ nG + DG for some i ∈ NG and j ∈ NB: then
B ∼= Ĝ.

In other words, if we have a network G and a candidate minimum
base B for G, we can check whether B is the minimum base of G
by finding a processor of G and a processor of B that share at least
nG + DG level of their views, and by checking that no network

10Note that in the coloured case, primeness does not depend only on the struc-
ture of a graph, but also on its colours.

11In fact, the connection is much deeper, as the view of a processor i in a net-
work G is the only in-tree fibred over G whose root is mapped to i.
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11

1 1

1 3

2

2

2

2

2

2 2

1 1 2 3 2 1

↓ µ ↓ µ ↓ µ ↓ µ

1 1 2 3 1 2 1 2 3

Figure 6: Some examples of minimal fibrations and minimum bases.

with less nodes than B has this property. This fact will enable us
to recover the minimum base from a sufficiently deep truncation
of a view, by suitably enumerating all fibration prime graphs.

Theorem 4 (Norris [20]) G̃i ∼= G̃j iff h
(
G̃i ∧ G̃j

) ≥ nG − 1.

Theorem 4 tells us that to distinguish different views of a network
G we just have to check isomorphism of the first nG − 1 levels.
Observe that if G is fibred over B, then the view of a processor
in G is the same as the view of the processor of B on which it is
mapped; hence, a processor can decide from a sufficiently deep
view the node of the minimum base it is mapped to by a minimal
fibration.

5.3 Deducing the minimum base from the view
An immediate consequence of the Lifting lemma is that the only
data we need to self-stabilize to a behaviour are the minimum base
of the network and a minimal fibration, plus a synchronized clock.
Note that we really need just the node component of the minimal
fibration, and that clocks are of course unnecessary in the case of
predicates.

This situation is similar to the typical scenario on an anony-
mous network [8]: all processors build a sufficiently deep trun-
cation of their view, and then apply Theorem 4 and 3. Since we
want our protocol to be able to run without any knowledge (for
instance, without knowing a bound on the number of processors),
we must provide a way to deduce the minimum base from trun-
cated views. To obtain an optimal quiescence time, we also want
to make this deduction as early as possible.

To this purpose, we introduce a partial function B that allows
processors to extract from their truncated view a candidate for
the minimum base of the network that the protocol is running on,
without assuming any other knowledge.

More precisely, B assigns to a tree T a fibration prime graph in
such a way that T is a prefix of a view of B(T ). We will set up B
in such a way that when T does not contain enough information,
B(T ) is undefined. Formally:

Definition 2 Let T be a tree. If the set{
G

∣∣ G is fibration prime and h(T ) ≥ nG +DG

and ∃i ∈ NG such that T ≤ G̃i
}

is nonempty, then B(T ) is the graph in the set above having the
least number of nodes (such a graph is unique up to isomorphism
by Theorem 3, and we choose a fixed representative for each iso-
morphism class). Otherwise, B(T ) is undefined.

Note that B is easily computable by enumeration when T is finite.
It is immediate to prove (using Theorem 3) that when B is fed
with a sufficiently deep truncation of a view, it returns the correct
minimum base:

Proposition 2 Let G be a graph. For every node i of G and every
k ≥ nĜ +DĜ we have B

(
G̃i � k

) ∼= Ĝ.

In particular, the above statement is true for k ≥ nG +DG. The
other fundamental property of B we shall need is described in the
following

Proposition 3 If B(T ) is defined, there is a unique node i of

B(T ) such that T ≤ B̃(T )
i

. Moreover, for every tree U such

that h(T ∧U) ≥ nB(T ) − 1, if B(T ) ∼= B(U) then U ≤ B̃(T )
i

.

Proof. Let B = B(T ). Existence follows from the definition of
B. Moreover, if there is a j such that T ≤ B̃j , since h(T ) ≥
nB − 1, we have h(B̃i ∧ B̃j) ≥ nB − 1, and by Theorem 4
i = j. Finally, there is a node j of B such that U ≤ B̃j ; since
h(U ∧ T ) ≥ nB − 1, we have again j = i.

As a general rule, whenever we write B(T ) ∼= B(U), we under-
stand that B is defined on both T and U (in this case, by definition
of B the isomorphism is actually an identity). In Table 2 we show
the only trees of height at most three and indegree at most two on
which B is defined, and the corresponding output value (the arcs
of the trees are of course oriented towards the root). Moreover, the
invite the reader to look back at Table 1: the last column shows
the value of B on the view of the last processor.

5.4 The characterization theorem

Theorem 5 Let C be a class of networks and S a behaviour on
Y . Then, the following two conditions are equivalent:

• there is a protocol that self-stabilizes to S;

9



T B(T )

Table 2: Some values of B on small trees.

• for every fibration prime graph B there is a sequence y0
B ,

y1
B , . . .∈ (Y nB )ω such that for all G ∈ C(

yTG

Ĝ

)µG

,
(
yTG+1

Ĝ

)µG

, · · · ∈ SG

for some TG ∈ N.

If the above holds, C can self-stabilize to S with quiescence time
at most max {nG +DG, TG}.

Proof. We just need to prove the positive part, the negative part
being a trivial application of the Lifting lemma. All processors
build their view using protocol (4), and at each step apply the
function B to obtain a guess B on the minimum base (and on
the node j of the minimum base to which they would be mapped
to); then, they set the Y -part of their state space to the j-th com-
ponent of yh

B , where h is the current height of the view (i.e., the
processors use the current view height as a synchronized clock).
As a result, the Y -part of the sequence of global states will be
in S. The quiescence time is a consequence of Theorem 1 and
Proposition 2.

Theorem 5 is twofold: on one side, it gives us a necessary and
sufficient condition to discover whether a class can self-stabilize
to a given behaviour; on the other side, its proof is based on a uni-
versal self-stabilizing protocol that works whenever the behaviour
is attainable. Note that there is a part of the protocol that depends
on the behaviour (the sequence associated to a minimum base),
but this part is the same for all processors, and does not contain
any “control logic” (it is used essentially as an oracle—different
oracles will give rise to all possible attainable behaviours).

The characterization implied by statement of Theorem 5 may
seem to be daunting, but it really boils down to the following
steps:

1. Find out the minimum bases of the networks in C .

2. For each of them, try to find out a sequence of global Y -
states satisfying the statement of the theorem (i.e., the se-
quence, once lifted to a network of C should represent a de-
sired behaviour).

3. If the previous step is not possible, then the behaviour is not
attainable; otherwise, the chosen sequences can be fed to the
universal protocol, giving rise to a self-stabilizing protocol
for the behaviour.

Of course, when C and Y are finite the above steps give an ef-
fective procedure. Otherwise, Theorem 5 is still a powerful tool
for proving possibility and impossibility results, as exemplified in
Section 8.

Let us apply the technique to the example given in Figure 1.
Some standard computations show that there are just two mini-
mum bases for the networks: one was given in Figure 5, and the
other one is presented in Figure 7. Looking at Figure 7 we notice

1

2

21

1 2

1 2
22

2 2

1

1 2

Figure 7: The remaining networks and their minimum base.

that the second network is an unsurmountable obstacle to elec-
tion: any predicate on the base (〈0, 1〉 or 〈1, 0〉), once lifted to
this network, gives an incorrect behaviour. On the other hand, the
other two networks do not give problems, since there is always ex-
actly one processor that is mapped to processor 1 of the base. We
conclude that self-stabilizing election is not possible in the class
shown in Figure 1; nonetheless, by eliminating the four-node net-
work of Figure 7 and one of the two bigger networks of Figure 5
self-stabilizing election becomes possible. The reader can easily
compute the two sequences used by the universal protocol.

A simple corollary of Theorem 5 gives us the attainable predi-
cates:

Corollary 1 Let C be a class of networks and S a predicate on
Y . Then, the following two conditions are equivalent:

• there is a protocol that self-stabilizes to S;

• for every fibration prime graph B there is a yB ∈ Y nB such
that

(
yĜ

)µG ∈ SG for all G ∈ C .

If the above holds, C can self-stabilize to S with quiescence time
at most nG +DG.

5.5 A lower bound
We now show that our bound on quiescence time is tight. We
base our proof on the fact that the bound nG +DG of Theorem 3
is tight: in [9] the authors proved that the fibration prime graphs
Gn,D and Hn,D of Figure 8, which have n nodes and diameter

D, have the property that G̃n,D

1
and H̃n,D

1
are isomorphic up to

level n+D−1, but not up to level n+D (the difference between
the two families is given by the positioning of the dotted arc). In
other words, processors living on such networks need a long time
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(n + D steps) to understand which kind of network they belong
to. Let now C be the class of networks Gn,D and Hn,D described
in Figure 8 and CN the class of networks of C with at most N
nodes. From the theory of anonymous networks we know that

Lemma 3 Processor 1 of network Gn,D and processor 1 of net-
work Hn,D have the same state for n + D − 1 steps of every
anonymous computation (i.e., every computation in which all pro-
cessors start from the same state).

This is immediate, as the state of a processor at time t depends
only on its view truncated at depth t.

Theorem 6 Every protocol that self-stabilizes CN to the predi-
cate

MBG = {〈 〈Ĝ, µG(1)〉, 〈Ĝ, µG(2)〉, . . . , 〈Ĝ, µG(nG)〉 〉},
has quiescence time at least n +D for at least |CN |/2 networks.
Note that essentially predicate MB forces each processor to com-
pute the network topology and its own identity in such network
(since all networks in C are fibration prime).

Proof. If a network with underlying graph Gn,D stabilizes before
n + D steps, by Lemma 3 the network Hn,D cannot stabilize
before n +D steps.

Corollary 2 Every protocol that self-stabilizes C (or a larger
class—in particular, the class of fibration prime graphs) to the
predicate MB has quiescence time at least n +D for infinite net-
works.

6 Finite-state universal self-stabilization
The previous sections should have made clear that computing the
minimum base and the node to which a processor is mapped, that
is, the predicate

MBG = {〈 〈Ĝ, µG(1)〉, 〈Ĝ, µG(2)〉, . . . , 〈Ĝ, µG(nG)〉 〉},

that we defined in Section 5.5, is all we need to self-stabilize to an
attainable predicate. Moreover, a synchronized clock is necessary
to self-stabilize to a generic behaviour.

Note that if we require state finiteness, then every computation
must be ultimately periodic, and, similarly, all behaviours must be
ultimately periodic. Thus, a finite-state modular clock would be
sufficient.

Unfortunately, the protocol we discussed uses an unbounded
number of states (the views are always growing). This is not a
problem if, for instance, a bound on the number of processor is
known: in this case, we can safely truncate all views at, say, twice
the number of processors, and obtain a correct guess for the min-
imum base. The resulting protocol would be finite state and, cou-
pled with the synchronized clock described in Section 6.1, would
give rise to a universal finite-state self-stabilizing protocol.

Clearly, there are some behaviours, such as a synchronized non-
wrapping clock, that requires necessarily infinite state, but impor-
tant problems (such as election) should have in principle a finite-
state self-stabilizing solution.

To overcome this problem, we introduce a guess mi > 0 for
each processor i, which is used to keep the height of Ti under
control. We shall set up our protocol in such a way that if mi

is too small, some locally checkable conditions will become true,
forcing an update of the guess. A certain number of such local
checks and corrections will be necessary, and this fact will in-
crease the quiescence time. Thus, we parameterize our protocol
with respect to an update function g, and show that we can make
the loss in quiescence time arbitrarily small by choosing an update
function g growing quickly enough. There is of course a tradeoff
with the space used by the protocol.

Let g : N → N be a strictly increasing and strictly inflationary
function (i.e., a function such that m < g(m) < g(m+ 1) for all
m ∈ N). We use gk to denote the k-th iterate of g, and define

g∗(m) = min{k | gk(0) ≥ m}.

It is rather easy to show that g∗(m) ≤ m, because gk(m) ≥
m+k, that gk(m) ≥ gk(0)+m and that, choosing g suitably, we
can make g∗ grow as slowly as desired.

The finite-state protocol self-stabilizing to MB is the following
one:

T t+1
i =U t

i �mt
i

mt+1
i =



max
j�i

mt
j if B

(
T t
i

) ∼= B
(
U t
i

)
∼= B

(
T t
j

)
for all j → i

g
(
max
j�i

mt
j

)
otherwise.

(5)

The intuition behind the protocol is that we proceed as in the
infinite-state case, but we keep just mi levels of our candidate
view. At each step all processors check that their current idea
about the minimum base is the same for all in-neighbours, and
moreover that the idea would not be changed by the next update.
If this does not happen, then the guess mi is increased using the
function g.

The proof of correctness of the protocol is rather complex. The
most delicate part consists in showing that if all processors have
the same idea about the minimum base, and they are not going to
change it at the next step, then the idea is the right one.

We now prove a number of lemmata that will lead us to the
main theorem. First of all, we show that the number of correct
levels of a tree increases at each step (as in Lemma 1), but in a
bounded way (we cannot expect it to grow at least by one at each
step, because U t

i is now truncated on the basis of the guess).

Lemma 4 Let m = mini m
t̄
i and c = mini h

(
T t̄
i ∧ G̃i

)
. Then,

for all t ≥ t̄,

(a). h
(
T t
i ∧ G̃i

) ≥ min{c+ t− t̄, m};

(b). h
(
T t
i ∧ G̃i

) ≥ min
{
c+ t− t̄, h

(
T t
i

)}
;

(c). if t̄ > 0, mini h
(
T t
i ∧ G̃i

) ≥ mini h
(
T t̄
i ∧ G̃i

)
.
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Figure 8: Networks with similar views.
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Proof. (a). The case t = t̄ is immediate. For t ≥ t̄,

h
(
T t+1
i ∧ G̃i

)
= min

{
h
(
U t
i ∧ G̃i

)
,mt

i

}
≥ min

{
min
j�i

h
(
T t
j ∧ G̃j

)
+ 1,m

}
≥ min{c+ t− t̄+ 1,m+ 1,m}
= min{c+ t− t̄+ 1,m},

using (1) and (3).

(b). The case t = t̄ is immediate, as h
(
T t̄
i ∧ G̃i

) ≥ c =

min
{
c, h

(
T t̄
i

)}
. For t ≥ t̄,

h
(
T t+1
i ∧ G̃i

)
= min

{
h
(
U t
i ∧ G̃i

)
, h

(
T t+1
i

)}
≥ min

{
min
j�i

h
(
T t
j ∧ G̃j

)
+ 1, h

(
T t+1
i

)}
≥ min

{
c+ t− t̄+ 1,min

j�i
h
(
T t
j

)
+ 1,

h
(
T t+1
i

)}
= min

{
c+ t− t̄+ 1, h

(
T t+1
i

)}
,

using again (1), (3) and (2).

(c). Note that certainly mt̄
i ≥ mt̄−1

i ≥ h
(
T t̄
i

) ≥ h
(
T t̄
i ∧ G̃i

)
.

Thus, by (a)

min
i

h
(
T t
i ∧ G̃i

)
≥ min

{
min
i

h
(
T t̄
i ∧ G̃i

)
+ t− t̄,min

i
mt̄

i

}
≥ min

i
h
(
T t̄
i ∧ G̃i

)
.

The above theorem guarantees that, under suitable conditions, the
number of correct levels will increase. However, we must also
show that at some time trees will be correct (i.e., T t

i ≤ G̃i). As
in the proof of Theorem 1, we obtain this result by showing that
trees with minimum correctness become correct at the first step,
and that correctness is inherited by out-neighbours.

Lemma 5 For all t > D we have T t
i ≤ G̃i for all i.

Proof. Let c = mini h
(
T 0
i ∧ G̃i

)
be the minimum correctness

level, and j be a node with minimum correctness. Since after the
first step

h
(
T 1
j

)
= c+ 1 ≥ h

(
T 1
j ∧ G̃j

) ≥ min
{
c+ 1, h

(
T 1
j

)}
by Lemma 4.(b), we can apply Proposition 1 (using the tree height
as f ), and obtain h

(
T t
i

) ≤ c + t for all i and all t > D. On the
other hand, h

(
T t
i ∧ G̃i

) ≥ min
{
c + t, h

(
T t
i

)}
= h

(
T t
i

)
, again

by Lemma 4.(b), and the thesis follows.

We now prove that if no processor applies g, then we are in a state
satisfying the predicate. Said otherwise, the local conditions that
we check guarantee that globally all processors are computing the
minimum base correctly.

Lemma 6 If B
(
T t
i

) ∼= B
(
U t
i

) ∼= B
(
T t
j

)
for all i and all j → i,

then B
(
T t
i

) ∼= Ĝ and T t
i ≤ G̃i for all i.

Proof. We prove the statement by building a fibrationϕ : G → B,
B being the common value of all B

(
Ti

)
(we drop the superscript

t throughout the proof); ϕ will of course be minimal. For all i,
let us define ϕ(i) as the unique (by Proposition 3) node of B such
that Ti ≤ B̃ϕ(i). Since h(Ui ∧ Ti) ≥ h(Ui) − 1 ≥ nB − 1, by
Proposition 3 we have also Ui ≤ B̃ϕ(i).

Let υ : B̃ϕ(i) → B be the fibration mapping each arc of B̃ϕ(i)

to the corresponding arc of B (recall that the nodes of B̃ϕ(i) are
paths into ϕ(i), and that each arc of B̃ϕ(i) arises from a unique arc
of B). We define ϕ on the arcs of G as follows: each arc j

a→ i
of G corresponds uniquely to an arc a′ coming into the root of
Ui ≤ B̃ϕ(i), so if we identify Ui with B̃ϕ(i) � h(Ui) then we can
map a to υ(a′).

To show that ϕ is a graph morphism, we must prove it com-
mutes with the source and target maps. The latter case is immedi-
ate, noting that

t(ϕ(a)) = t
(
υ(a′)

)
= υ(t(a′)) = ϕ(i) = ϕ(t(a)).

For the former case, we have

s(ϕ(a)) = s
(
υ(a′)

)
= υ(s(a′)).

Since Tj is an extension of a first-level subtree V of Ui, we have
V ≤ Tj ≤ B̃ϕ(j). Moreover, since h(V ) = h(Ui)− 1 ≥ nB − 1,
if for some k we have V ≤ B̃k then necessarily k = ϕ(j). But
V ≤ B̃υ(s(a′)) by definition of view, so s(ϕ(a)) = ϕ(s(a)).

The fact that ϕ is a fibration follows easily from its definition on
the arcs, so we obtain B ∼= Ĝ and, consequently, Ti ≤ B̃ϕ(i) ∼=
G̃i.

Of course, we need to show that the above conditions, once satis-
fied, remain true forever. This is the purpose of the next

Lemma 7 If there is a t̄ > 0 such that B
(
T t̄
i

) ∼= Ĝ and T t̄
i ≤ G̃i

for all i, then these properties are true for all t ≥ t̄.

Proof. Since h
(
T t̄
i

) ≥ nĜ +DĜ for all i, we have

h
(
T t̄+1
i

) ≥ min
{
nĜ +DĜ + 1,mt̄

i

}
≥ min

{
nĜ +DĜ + 1, h

(
T t̄
i

)} ≥ nĜ +DĜ.

By definition T t̄+1
i ≤ U t̄

i ≤ G̃i, so by Proposition 2 B
(
T t̄+1
i

) ∼=
Ĝ.

The above proposition shows that if Protocol (5) is self-
stabilizing, it is certainly finite state, as upon stabilization g is
never applied, so in finite time all processors enter a fixed point
(U t

i is always truncated at height mt
i, and thus T t

i does not grow
anymore).

Finally, we have to give bounds for quiescence time. To this
purpose, we firstly show that if stabilization has not been reached
yet, g has been applied often enough:

Lemma 8 Let m = mini m
0
i . For all k ∈ N, letting tk = kD +

gk(m), one of the two following statements is true:

(a). for all i we have B
(
T tk
i

) ∼= Ĝ and T tk
i ≤ G̃i;

(b). maxi m
tk
i ≥ gk+1(m) and, for all tk + D ≤ t ≤ tk+1, we

have h
(
T t
i ∧ G̃i

) ≥ t− (k + 1)D.
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Proof. Since statement (a) is stable (Lemma 7), we can prove
our claim by induction assuming that (b) is true and (a) is false.
For k = 0 we have maxi m

m
i ≥ g(m), as at least one processor

applies g if statement (a) is not true (recall that m > 0). Thus,
mini m

m+D
i ≥ g(m), so for m+D ≤ t ≤ D + g(m) we have

h
(
T t
i ∧ G̃i

) ≥ min{m+ t−m−D, g(m)} = t−D

using Lemma 4.(a) first with t̄ = m+D and then with t̄ = 0.
For the general case, note that certainly minim

tk+D
i ≥

gk+1(m), so, unless (a) has already become true, we have
maxi m

tk+D+1
i ≥ gk+2(m), and maxi m

tk+1

i ≥ gk+2(m) since
tk + D + 1 ≤ tk+1. Moreover, for all tk+1 + D ≤ t ≤ tk+2,
using Lemma 4.(a) and 4.(c) we have

h
(
T t
i ∧ G̃i

) ≥ min
{
min
i

h
(
T

tk+1+D
i ∧ G̃i

)
+ t− tk+1 −D,

min
i

m
tk+1+D
i

}
≥ min

{
min
i

h
(
T

tk+1

i ∧ G̃i
)
+ t− tk+1 −D,

max
i

m
tk+1

i

}
≥ min

{
tk+1 − (k + 1)D + t− tk+1 −D,

gk+2(m)
}

= t− (k + 2)D.

Finally, we can prove our second main result, which is the finite-
state counterpart of Theorem 1:

Theorem 7 Protocol (5) finite-state self-stabilizes the class of all
networks to the predicate MB , with quiescence time at most nG+
DG + g∗(nG +DG)DG on network G.

Proof. With the same notation as in Lemma 8, let k̄ = min{k |
gk(m) ≥ n + D} ≤ g∗(n + D). If k̄ = 0, then m ≥ n + D,
so using Lemmata 4.(a) and 5 we obtain the result. If k̄ > 0, note
that gk̄−1(m) < n +D. and

tk̄−1 +D ≤ n +D + k̄D ≤ tk̄.

Thus, either we stabilized before time tk̄−1 ≤ n + D + g∗(n +
D)D, or, by Lemma 8,

h
(
T n+D+k̄D
i ∧ G̃i

) ≥ n +D + k̄D − k̄D = n+D,

and since D < n +D + k̄D ≤ t, using Lemma 5 we obtain the
thesis.

Note that, with respect to the infinite-state case, there is a loss
given by the diameter times an arbitrarily slow function of n+D.
This factor is due to the time necessary to detect locally that the
guesses are too small, and to the time subsequently necessary to
spread this knowledge to the whole network. Clearly, the result-
ing bound is O(ng∗(n)); thus, unless a precise space bound is
required the loss in quiescence time can be reduced arbitrarily,
and the gap with our lower bound (Corollary 2) can be made ar-
bitrarily small. However, we conjecture that there is no universal
finite-state protocol self-stabilizing to predicates with quiescence
time O(n).

6.1 Self-stabilizing clocks
The protocols of the previous sections allow self-stabilization
to predicates. The second ingredient we need in order to self-
stabilize to arbitrary behaviours is a synchronized clock. In the
infinite-state case, the clock is provided at self-stabilization by
h
(
T t
i

)
, which is equal for all i and grows exactly by one at each

step.
There are several results about self-stabilizing clock synchro-

nization in the literature. For some of the more recent results,
and a very good survey, see [14]. All known results, however, are
not sufficiently general to be applied in our case (for instance, the
only results about unidirectional networks are about rings).

We are now going to describe a finite-state self-stabilizing pro-
tocol that provides each processor with a clock modulo P , where
P ≥ 1 is a given constant. In our protocol, each processor i has
two integer variables Mi > 0 and 0 ≤ Ci < P (Mi)

2, where Ci

is the clock value (for the purposes of stabilization, however, we
consider Ci mod P ) and Mi is used as a guess to find a large
enough multiple of P so to make the clocks stabilize quickly.
Once again, we use a strictly increasing and inflationary update
function g : N → N; thus, the protocol is parameterized by the
choice of g and P .

Denoting by Ct
i ,M

t
i the values of clock and guess at time t, we

define our protocol as follows12:

Ct+1
i =min

j�i
Ct

j + 1 mod P
(
M t

i

)2
M t+1

i =


max
j�i

M t
j if Ct

j ≡P Ct
i for all j → i

g
(
max
j�i

M t
j

)
otherwise.

(6)

The basic idea is that, until synchronization, we shall keep incre-
menting Mi so that, at some point, there will be “enough space”
between the largest clock value and the smallest modulus. Note
that as soon as all clocks have the same value moduloP , this prop-
erty will remain true afterwards, because (x mod kP ) mod P =
x mod P . (Under this condition, an extra delay D will be neces-
sary for all guesses to become equal, but this fact will not desyn-
chronize the clocks.)

From now onwards, we let M = mini M
0
i and we assume

without loss of generality that D > 0. Note that after the first
step all processors that are out-neighbours of those with minimum
clock value will set their clock to no more than mini C

0
i + 1, and

that in D steps the upper bound will propagate to all processors (of
course, clocks cannot increase more than 1 unit per step). More
formally, since the clock value satisfies the hypotheses of Propo-
sition 1, we have that for all t ≥ D

Ct
i ≤ min

i
C0

i + t ≤ PM2 + t.

We now prove the following

12For sake of simplicity, we defined our state space in such a way that it does not
contain all pairs of guesses and clock values. If the reader is not at ease with this
choice, he or she can equivalently substitute the first rule so to minimize Ct

j mod

P
(
M t

j

)2 instead of just Ct
j .
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Lemma 9 For all k ∈ N, one of the two following statements is
true:

(i). for all i, j we have CkD
i ≡P CkD

j ;

(ii). mini M
kD
i ≥ gk(M).

Proof. For k = 0 we have mini M
0
i = M = g0(M), and state-

ment (ii) is true. Since statement (i) is stable, to make the induc-
tive step we can assume that statement (ii) is true and statement (i)
is false for k. But if there are two clocks with different values
modulo P at time kD, then for every processor i there is a pro-
cessor j satisfying d(j, i) < D that will apply g at the next step
(take a processor l with Ct

l �≡PC
t
i minimizing d(l, i) ≤ D, and let

j be the first processor on a shortest path from l to i). Since for
all processors j that apply g at time kD we have

MkD+1
j ≥ g

(
min
i

MkD
i

) ≥ gk+1(M),

in D − 1 more steps (i.e., at time kD +D) this lower bound will
propagate to all processors, that is, miniM

(k+1)D
i ≥ gk+1(M).

Theorem 8 Protocol (6) finite-state synchronizes (modulo P ) all
clocks within g∗(D)D +D steps.

Proof. Let k = g∗(D). At time kD either clocks are equal mod-
ulo P , or by Lemma 9 we have MkD

i ≥ gk(M) for all i. In this
case,

P
(
MkD

i

)2 − CkD
i ≥ P

(
gk(M)

)2 − (PM2 + kD)

= P
(
gk(M)−M

)(
gk(M) +M

)− kD

≥ Pgk(0)
(
gk(0) + 2M

)− kD

≥ PD(D + 2)− g∗(D)D

≥ D(D + 2)−D2 > D.

Thus, since the guesses are nondecreasing, between time kD and
kD+D clock values will not “wrap”, so by Proposition 1 at time
kD +D all clocks will have value miniC

kD
i +D.

6.2 The finite-state characterization theorem

Theorem 9 Let C be a class of networks and S a behaviour on
Y . Then, the following two conditions are equivalent:

• C can finite-state self-stabilize to S;

• for every fibration prime graph B there exists a periodic se-
quence y0

B , y1
B , . . .∈ (Y nB )ω such that for all G ∈ C(

y0
Ĝ

)µG
,
(
y1
Ĝ

)µG
, · · · ∈ SG.

If the above holds, for every g : N → N strictly monotonic and
inflationary, C can self-stabilize to S with quiescence time at most

nG + [2 + g∗(nG +DG) + g∗(DG)]DG.

Proof. The condition is necessary by the Lifting lemma and by
the fact that a finite-state behaviour is necessarily ultimately pe-
riodic. For sufficiency, we run in parallel the finite-state Proto-
col (5), which stabilizes every network to the predicate MB , and
the finite-state clock synchronization protocol (6), using the pe-
riod of the sequence associated to the current “candidate” mini-
mum base (if B is undefined, the choice of the period is imma-
terial). As soon as the first protocol has reached stabilization, the
period has the correct value, and, after the additional quiescence
required for the clocks to synchronize, we self-stabilize to the re-
quired behaviour analogously to Theorem 5.

More precisely, at each step each processor applies the func-
tion B to obtain a guess B on the minimum base (and on the
node j of the minimum base to which they would be mapped to);
then, it sets the Y -part of its state space to the j-th component of
yh
B , where h is the current clock value modulo the period of the

sequence associated to B. The final statement is an immediate
consequence of Theorems 7 and 8.

In the case of predicates we have instead:

Theorem 10 Let C be a class of networks and S a predicate on
Y . Then C can finite-state self-stabilize to S if and only if for
every fibration prime graph B there exists a yB ∈ Y nB such that(
yĜ

)µG ∈ SG for all G ∈ C . In such a case, C can self-stabilize
to S with quiescence time at most nG +DG + g∗(nG +DG)DG,
where g : N → N is a strictly monotonic and inflationary func-
tion.

7 The case of unique identifiers

In the previous sections, we made no assumption on the nature
of the node colouring; as an extreme case (the uniform case) all
processors might have been indistinguishable (so their transition
function would have always been the same). Since several papers
about self-stabilization assume that processors have unique iden-
tifiers13, in this section we want to focus our attention to this spe-
cial case; a network has unique identifiers iff the node-colouring
function is injective (this property is equivalent to saying that all
processors are different, and use a different transition function).

As we shall see in a moment, we can fruitfully make use of
the presence of unique identifiers to improve the efficiency of the
algorithms and reduce the quiescence time. This fact evidences
that the possibility of identifying each processor in a unique man-
ner may reduce the time needed to self-stabilize a system; this
improvement turns out to be particularly dramatic if the network
has a small diameter. Moreover, Theorem 5 trivialises, as every
behaviour admits a self-stabilizing protocol.14

Before presenting the modified algorithm, some comments are
in order. If G has unique identifiers, then it is necessarily fibration
prime; moreover, Theorem 3 may be rephrased in this case as
follows:

13Typically, when studying topology reconstruction; note however that one can
do self-stabilizing topology reconstruction (even if all processors are identical) in
any class of fibration prime graphs (and only in such classes).

14Note that the asymmetry requirements of many papers on self-stabilization
(e.g., [19, 3]) are such that all networks are fibration prime. This is the reason why
they can prove self-stabilization to any desired behaviour.
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Theorem 11 Let G and B be strongly connected graphs with
unique identifiers such that h

(
G̃i ∧ B̃j

) ≥ DG + 1. If no graph
with less nodes than B satisfies this property, then G ∼= B.

The proof is easy, as under the unique identifiers assumption the
conditions on G̃i and B̃j imply G̃i ∼= B̃j , so Theorem 3 can
be applied. As a consequence, we can give a slightly different
definition for the function B: if T is a tree, Bu(T ) is defined
as the (unique, by Theorem 11) graph with minimum number of
nodes in the set{

G
∣∣ G has unique identifiers and h(T ) ≥ DG + 1

and ∃i ∈ NG such that T ≤ G̃i
}
,

unless this set is empty (in which case Bu(T ) is undefined).
The function Bu has the following property, which is a special
(stronger) version of Proposition 2:

Proposition 4 Let G be a graph with unique identifiers, and T
be a tree. If T ≤ G̃i for some i ∈ NG, then either Bu(T ) is
undefined, or Bu(T ) ∼= G, and the latter happens iff h(T ) ≥
DG + 1;

Proof. The proof follows from Theorem 11, as the existence of a
smallest graph H such that T ≤ H̃j and h(T ) ≥ DH + 1 would
imply G ∼= H , so Bu is undefined when h(T ) < DG + 1. The
other implication is trivial.

Our finite-state protocol is now as follows:

T t+1
i =

{
T t
i if Bu

(
T t
i

) ∼= Bu

(
U t
i

)
and T t

i ≤ U t
i

U t
i otherwise.

(7)

To prove self-stabilization to MB we introduce the following def-
inition:

cti =

{
∞ if Bu(T

t
i )

∼= G and T t
i ≤ G̃i

h
(
T t
i ∧ G̃i

)
otherwise,

and we set ct = mini c
t
i. This quantity measures the “minimum

amount of correct levels” at time t, but assumes that sufficiently
deep and correct trees have an infinite number of correct levels.

Lemma 10 For every t ≥ 0 we have ct+1 ≥ ct + 1.

Proof. If ct = ∞, then the only possible change of state for
a processor is a truncation of its tree that leaves Bu untouched.
Thus, ct+1 = ∞.

Assume now ct < ∞, and note that if processor i sets T t+1
i to

T t
i , then clearly ct+1

i = cti ≥ ct. On the other hand, if i sets T t+1
i

to U t
i , then ct+1

i ≥ ct + 1, as all in-neighbours of i (and i itself)
have at least ct correct levels.

We now show that all processors i such that cti = ct fall in the
latter case. Assume by contradiction that Bu

(
T t
i

) ∼= Bu

(
U t
i

)
and T t

i ≤ U t
i . Since U t

i ≤ G̃i (as i has smallest correctness),
G ∼= Bu

(
U t
i

) ∼= Bu

(
T t
i

)
, so necessarily T t

i �≤ G̃i (otherwise

cti = ∞). However, T t
i ≤ G̃j for some j �= i, so T t

i ∧ G̃i = ⊥.
Thus, by (1)

−1 = h
(
T t
i ∧ G̃i

)
= min

{
h
(
U t
i ∧ G̃i

)
, h

(
T t
i

)} ≥ 0.

Theorem 12 Protocol (7) finite-state self-stabilizes the class of
all networks with unique identifiers to the predicate MB , with
quiescence time at most DG + 1 on network G.

Proof. Assume by contradiction that for some t > D we have
ct < ∞. Since the update rule always sets T t+1

i to U t
i when

h
(
U t
i

)
< h

(
T t
i

)
, we can apply Proposition 1 using the tree

height as function f , obtaining that h
(
T t
i ) ≤ c0 + t for all i

(as usual, after the first step trees of least correctness are trun-
cated at height c0 + 1). On the other hand, by Lemma 10 we
have c0 + t ≤ ct ≤ h

(
T t
i

)
. Thus, h

(
T t
i

)
= ct ≥ D + 1 for all

i, and, by Theorem 11, ct = ∞, contradicting our assumption.
State finiteness is immediate, as after stabilization maxi h

(
T t
i

)
does not grow.

Once again the above bound is tight: by suitably assigning unique
identifiers to the family of graphs shown in Figure 8, it is easy to

see that G̃n,D

1
and H̃n,D

1
are isomorphic up to level D, but not

D + 1.
Note that in the infinite-state case, a synchronized clock Ci can

be provided with the update rule Ct+1
i = minj�i C

t
j + 1; this

clock will self-stabilize in D steps. Thus, by running the two
protocols in parallel, we obtain:

Theorem 13 Let C be a class of networks with unique identifiers
and S a behaviour on Y . Then C can self-stabilize to S with
quiescence time at most DG + 1 on network G.

On the other hand, in the finite-state case:

Theorem 14 Let C be a class of networks and S a behaviour on
Y . Then C can finite-state self-stabilize to S if and only if SG

contains a periodic sequence for every G ∈ C . In such a case, C
can self-stabilize to S with quiescence time at most 3DG + 1 on
network G.

Proof. We run in parallel Protocol (7) with the finite-state clock
synchronization protocol (6). At each step t, let B be the current
guessed minimum base (i.e., Bu(T

t
i )); then we set P to the pe-

riodicity of the sequence associated to B and15 g(n) = n +DB .
By Theorem 8 we obtain a synchronized clock in at most 2DG

steps after stabilization to MB (as g∗(DG) = g∗
(
DB

)
= 1 in

this case).

8 Examples
In this section we provide a number of examples, showing how,
for classical and non-classical problems, we can easily charac-
terize the classes in which self-stabilization is possible; we also
give an informal specialization of our universal protocols, show-
ing how to solve the problem “in practice” (of course, it may be

15Again, when B is undefined, the choice of DB is immaterial.
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possible to obtain by refinement more efficient versions of these
protocols). We assume Y = {0, 1}, unless specified otherwise.
Quiescence times can be easily derived from the results in the pre-
vious sections.

Leader election. In this problem, we must reach a state in
which exactly one processor is a leader, and all other processors
know they are not. We have that SG is made of all tuples in Y nG

containing exactly a 1. The necessary and sufficient condition on
C for the existence of a self-stabilizing protocol is that for all fi-
bration prime graphs B there is a node i such that for all G ∈ C
satisfying Ĝ ∼= B we have

∣∣µ−1
G (i)

∣∣ = 1. Indeed, if the latter
condition is satisfied then to the fibration prime graph B we can
associate the tuple in Y nB containing exactly a 1 in position i,
thus satisfying Theorem 10. On the other hand, if the condition is
not true then any choice of yB would produce a vector with zero
or at least two 1’s when lifted to at least one G ∈ C . Note that
in particular the condition is true for classes of fibration prime
graphs or networks with unique identifiers, but these cases are
very special. The protocol computes the minimum base B, and
then the (necessarily unique) processor mapped to the node i of
the condition above is elected.

Token teleportation (a.k.a. mutual exclusion). Processors
have to teleport a token around, in such a way that only one sin-
gle token exists at any time, and that on G each processor receives
the token exactly each nG steps. Thus, SG contains the iterates of
the sequence 〈1, 0, . . . , 0〉, 〈0, 1, . . . , 0〉, . . . , 〈0, 0, . . . , 1〉 and all
the sequences obtained by index permutation. Note that this con-
straint must be satisfied even if the topology of G does not allow to
intuitively “pass” the token along a link. The problem is solvable
exactly on classes of fibration prime graphs: indeed, if a nonprime
graphG exists in C , then any sequenceyt

Ĝ
must have an item with

a 1 in a position i such that
∣∣µ−1

G (i)
∣∣ > 1, so Theorem 9 is not sat-

isfied. On the other hand, we can just set yt
B to the tuple in Y nB

containing exactly a 1 in position (t mod nB) + 1. The protocol
computes the minimum base B (which is of course isomorphic to
G), and establishes a synchronized clock (modulo nB = nG in
the finite-state case). At clock c processor (c mod nB) + 1 holds
the token, which is teleported to processor (c+1 mod nB)+1 at
the next step.

Complete topology reconstruction. Each processor must re-
construct the network it is running on, and select itself (in this
case, Y is given by pairs of networks and natural numbers). More
in detail, SG contains tuples 〈〈H, i1〉, 〈H, i2〉, . . . , 〈H, inG〉〉,
where there is an isomorphism α : H → G such that α(ij) = j.
The problem is solvable exactly on classes of fibration prime
graphs, as if a nonprime graph G exists in C , then any choice
for yĜ will give by lifting a tuple where a natural number appears
two times as second component. On the other hand, on fibration
prime graphs this predicate is a superset of MB , which is attain-
able.

Topology reconstruction. Each processor must reconstruct the
network it is running on, but it is not required that it selects itself.
It may seem strange, but the classes on which this problem is
solvable are more than in the previous case. Indeed, the problem

is solvable exactly on classes C such that for every fibration prime
graph B there is at most a G in C such that Ĝ ∼= B (the reader
should be able to build a proof by this time). Every processor can
clearly obtain the network from the minimum base.

Weak leader election. In this case, we require all processor to
enter a third state ∗ (so Y = {0, 1, ∗}) if leader election is impos-
sible on the network the protocol is running on. Thus, SG is made
of all tuples in Y nG containing either exactly a 1 if leader election
is possible on {G}, or the only tuple 〈∗, ∗, . . . , ∗〉 otherwise. The
necessary and sufficient condition on C for the existence of a self-
stabilizing protocol is that whenever leader election is impossible
in CB = {G ∈ C | Ĝ ∼= B} for a fibration prime graph B, then
it is impossible in every G ∈ CB (i.e., in {G}); the reader can
easily check that this condition is much weaker than that needed
in our first example (see, e.g., [8]). Indeed, if the condition holds
we can set yB = 〈∗, ∗, . . . , ∗〉 when election is impossible in CB ,
or use the same yB as in our first example otherwise (since elec-
tion is possible in CB). On the other hand, if there is a fibration
prime graph B such that election is impossible in CB but possi-
ble on some G ∈ CB , any assignment to yB would not suit SG.
The resulting protocol computes the minimum base B; then, ei-
ther election is impossible in CB , and all processors “surrender”,
or we proceed as in our first example.

Lower bounded synchronized clock. All processors are re-
quired to hold a synchronized clock, increasing of one unit at each
step, whose value is greater than n2

G; more precisely, SG is made
by the sequence 〈n2

G, n
2
G, . . . , n

2
G〉, 〈n2

G + 1, n2
G + 1, . . . , n2

G +
1〉, . . . and its suffixes. Clearly any class can self-stabilize to this
behaviour, but the interesting point is that the quiescence time is
in general greater than n + D (i.e., the maximum in Theorem 5
is realized by TG). This fact is true of every protocol, and in par-
ticular of ours, as the following argument shows: consider an ar-
bitrary protocol self-stabilizing to S on the class of unidirectional
uniform rings. On the ring with one processor, starting from a
state x we obtain a sequence of states x0, x1, . . . such that for
a certain T we have π

(
xT

)
, π

(
xT+1

)
, . . . is in S. Thus, self-

stabilization on the ring of n ≥ π
(
xT

)
processors is impossible

before n2 − π
(
xT

)
+T ∼ n2 steps, as one can easily see starting

a computation with local initial state equal to x for all processors.
Note that by choosing a function faster than squaring we can en-
large the gap with n +D arbitrarily.

9 Conclusions
This paper presented an organic theory of self-stabilization on
synchronous networks. In Table 3 we summarize the bounds we
obtained for our universal protocols. As far as the minimum base
construction is concerned, our bounds are all tight except for the
general finite-state case, were we have an asymptotically nearly
optimal bound (the upper bound is O(ng∗(n)) with g∗ arbitrarily
slow, and the lower bound is Ω(n)). It is a relevant open problem
to prove or disprove the conjecture that there is no finite-state uni-
versal protocol with quiescence time O(n), but the fact that there
are protocols arbitrarily close to that bound suggests that the task
is not easy.
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Minimum base
construction

Clock
synchronization

phase

Inf. states n +D (tight)

Inf. states,
unique id’s D + 1 (tight)

Fin. states n +D + g∗(n +D)D D + g∗(D)D

Fin. states,
unique id’s D + 1 (tight) 2D

Table 3: A summary of the bounds on quiescence time.

A natural question arises about the possibility of emulating the
protocols we described in an asynchronous message-passing sys-
tem. There is a standard equivalence result between synchronous
shared-memory and asynchronous message-passing anonymous
networks proved by Yamashita and Kameda [22] that can be eas-
ily extended to the level of generality adopted in this paper, but
the extension to self-stabilizing systems would require the design
of self-stabilizing simulations of shared memory (such as those
described in [1, 16]) that do not require any additional informa-
tion (e.g., distinguished incoming links). To our knowledge, no
such protocols exist at this time.

The synchronous scheduler assumed in this paper is less pow-
erful than the interleaved (a.k.a. central daemon) scheduler of-
ten assumed in the literature; the latter guarantees that exactly
one processor is activated at each step, and this property can be
used to introduce asymmetry (e.g., rings of prime size have self-
stabilizing leader election algorithms using interleaved activation,
but not using synchronous activation). However, asynchronous
message-passing and synchronous shared-memory systems can-
not in general emulate this powerful feature, as shown in the case
of anonymous networks (and thus a fortiori for self-stabilizing
systems) in [8]. Of course, this difference is immaterial once
unique identifiers are assumed, or created using randomness (as
in [4, 17, 15]). Note that the distribution of such unique iden-
tifiers would allow one to use the faster protocols of Section 7;
however, the existing algorithms use some knowledge (e.g., bidi-
rectionality) that we do not assume, and thus they can be applied
only if the class under consideration satisfies the additional nec-
essary requirements.

In [11] we proved that the minimum base construction proto-
cols work also with a completely asynchronous scheduler (but
we could not prove optimality of their quiescence time). Thus,
a theory similar to the one outlined here can be pursued for net-
works with an asynchronous or interleaved scheduler, using the
fibration-theoretic notions described in [8, 10]. In each case,
the computability results for classes of anonymous networks with
bounded size can always be turned immediately into results about
self-stabilization by substituting the computation of the minimum
base (that uses the knowledge of the size bound and assumes cor-
rect views) with the guess given by the function B; thus, charac-
terizations for specific problems (such as those given in the above-
mentioned papers) can be easily turned into characterization for
self-stabilization.

As a final note, we remark that particular conditions on the
colouring of the arcs can make more behaviours attainable. For
instance, if, as it happens in a very common model, all links are
bidirectional and locally distinguishable by the processors, then
the simple presence of a leader makes a network fibration prime
(see [9]). Thus, in this case the presence of a single distinguished
processor makes it possible to self-stabilize to any behaviour.
However, this is no longer true if processors cannot distinguish
their outgoing links, as it is immediate to check using the tools
described in this paper.
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