
An experimental exploration of Marsaglia’s xorshift generators,
scrambled

Sebastiano Vigna, Università degli Studi di Milano, Italy

Marsaglia proposed xorshift generators as a class of very fast, good-quality pseudorandom number gener-

ators. Subsequent analysis by Panneton and L’Ecuyer has lowered the expectations raised by Marsaglia’s
paper, showing several weaknesses of such generators. Nonetheless, many of the weaknesses of xorshift

generators fade away if their result is scrambled by a non-linear operation (as originally suggested by

Marsaglia). In this paper we explore the space of possible generators obtained by multiplying the result of
a xorshift generator by a suitable constant. We sample generators at 100 points of their state space and

obtain detailed statistics that lead us to choices of parameters that improve on the current ones. We then
explore for the first time the space of high-dimensional xorshift generators, following another suggestion

in Marsaglia’s paper, finding choices of parameters providing periods of length 21024 − 1 and 24096 − 1.

The resulting generators are of extremely high quality, faster than current similar alternatives, and generate
long-period sequences passing strong statistical tests using only eight logical operations, one addition and

one multiplication by a constant.

Categories and Subject Descriptors: G.3 [PROBABILITY AND STATISTICS]: Random number gen-
eration; G.3 [PROBABILITY AND STATISTICS]: Experimental design

General Terms: Algorithms, Experimentation, Measurement

Additional Key Words and Phrases: Pseudorandom number generators

1. INTRODUCTION

xorshift generators are a simple class of pseudorandom number generators introduced
by Marsaglia [2003]. In Marsaglia’s view, their main feature is speed: in particular, a
xorshift generator with a 64-bit state generates a new 64-bit value using just three 64-bit
shifts and three 64-bit xors (i.e., exclusive ors), thus making it possible to generate hundreds
of millions of values per second.

Subsequent analysis by Brent [2004] showed that the bits generated by xorshift gener-
ators are equivalent to certain linear feedback shift registers. Panneton and L’Ecuyer [2005]
analyzed in detail the theoretical properties of the generators, and found empirical weak-
nesses using the TestU01 suite [L’Ecuyer and Simard 2007]. They proposed an increase in
the number of shifts, or combination with another generator, to improve quality.

In the first part of this paper, as warm-up we explore experimentally the space of
xorshift generators with 64 bits of state using statistical test suites. We sample generators
at 100 points of their state space, to easily identify spurious failures. Marsaglia proposes
some choice of parameters, that, as we will see, and as already reported by Panneton and
L’Ecuyer [2005], are not particularly good. We report results that are actually worse than
those of Panneton and L’Ecuyer as we use the entire 64-bit output of the generators. While
we can suggest some good parameter choices, the result remains poor.

Thus, we turn to the idea of scrambling the result of a xorshift generator using a
multiplication, as it is typical, for instance, in the construction of practical hash functions
due to the resulting avalanching behavior (bits of the result depend on several bits of the
input). This method is actually suggested in passing in Marsaglia’s paper. The third edition
of the classic “Numerical Recipes” [Press et al. 2007], indeed, proposes this construction for

This work is supported the EU-FET grant NADINE (GA 288956).
This paper is an extended version of the paper with the same title published in the ACM Transactions on
Mathematical Software [Vigna 2016].
Author’s addresses: Sebastiano Vigna, Dipartimento di Informatica, Università degli Studi di Milano, via
Comelico 39, 20135 Milano MI, Italy.

2 S. Vigna

C code
A0 x ^= x << a; x ^= x >> b; x ^= x << c; X1

A1 x ^= x >> a; x ^= x << b; x ^= x >> c; X3

A2 x ^= x << c; x ^= x >> b; x ^= x << a; X2

A3 x ^= x >> c; x ^= x << b; x ^= x >> a; X4

A4 x ^= x << a; x ^= x << c; x ^= x >> b; X5

A5 x ^= x >> a; x ^= x >> c; x ^= x << b; X6

A6 x ^= x >> b; x ^= x << a; x ^= x << c; X7

A7 x ^= x << b; x ^= x >> a; x ^= x >> c; X8

Fig. 1. The eight possible xorshift64 algorithms. The list is actually derived from Panneton and L’Ecuyer
[2005], as they correctly remarked that two of the eight algorithms proposed by Marsaglia were redundant,
whereas two (A6 and A7) were missing. On the right side we report the name of the linear transformation
associated to the algorithm as denoted by Panneton and L’Ecuyer [2005]. With our numbering, algorithms
A2i and A2i+1 are conjugate by reversal. Note that contiguous shifts in the same direction can be exchanged
without affecting the resulting algorithm. We normalized such contiguous shifts so that their letters are
lexicographically sorted.

a basic, all-purpose generator. From the wealth of data so obtained we derive generators
with better statistical properties than those suggested in “Numerical Recipes”.

In the last part of the paper, we follow the suggestion about high-dimensional generators
contained in Marsaglia’s paper, and compute several choices of parameters that provide
full-period xorshift generators with a state of 1024 and 4096 bits. Once again, we propose
generators that use a multiplication to scramble the result.

At the end of the paper, we apply the same methodology to a number of popular non-
cryptographic generators, and we discover that our high-dimensional generators are actually
faster and of higher or equivalent statistical quality, as assessed by statistical test suites,
than the alternatives.

The software used to perform the experiments described in this paper is distributed by
the author under the GNU General Public License. Moreover, all files generated during the
experiments are available from the author. They contain a large amount of data that could
be further analyzed (e.g., by studying the distribution of p-values over the seeds). We leave
this issue open for further work.

2. AN INTRODUCTION TO xorshift GENERATORS

The basic idea of xorshift generators is that their state is modified by applying repeatedly
a shift and an exclusive-or (xor) operation. In this paper we consider 64-bit shifts and states
made of 2n bits, with n ≥ 6. We usually append n to the name of a family of generators
when we need to restrict the discussion to a specific state size.

For xorshift64 generators Marsaglia suggests a number of possible combination of shifts,
shown in Figure 1. Not all choices of parameters give a full (264 − 1) period: there are 275
suitable choices of a, b and c and eight variants, totaling 2200 generators.

In linear-algebra terms, if L is the 64 × 64 matrix on Z/2Z that effects a left shift of
one position on a binary row vector (i.e., L is all zeroes except for ones on the principal
subdiagonal) and if R is the right-shift matrix (the transpose of L), each left/right shift
and xor can be described as a linear multiplication by

(
I + Ls

)
or
(
I + Rs

)
, respectively,

where s is the amount of shifting.1 For instance, algorithm A0 of Figure 1 is equivalent to
the Z/2Z-linear transformation

X1 =
(
I + La

)(
I +Rb

)(
I + Lc

)
.

1A more detailed study of the linear algebra behind xorshift generators can be found in [Marsaglia 2003;
Panneton and L’Ecuyer 2005].

An experimental exploration of Marsaglia’s xorshift generators, scrambled 3

It is useful to associate with a linear transformation M its characteristic polynomial

P (x) = det(M − xI).

The associated generator has maximum-length period if and only if P (x) is primitive over
Z/2Z. This happens if P (x) is irreducible and if x has maximum period in the ring of
polynomial over Z/2Z modulo P (x), that is, if the powers x, x2, . . . , x2

n−1 are distinct
modulo P (x). Finally, to check the latter condition is sufficient to check that

x(2
n−1)/p 6= 1 mod P (x)

for every prime p dividing 2n − 1 [Lidl and Niederreiter 1994].
The weight of P (x) is the number of terms in P (x), that is, the number of nonzero

coefficients. It is considered a good property for generators of this kind that the weight is
close to n/2, that is, that the polynomial is neither too sparse nor too dense [Compagner
1991].

Note that the family of algorithms of Figure 1 is intended to generate 64-bit values. This
means that the entire output of the algorithm should be used when performing tests. We
will see that this has not always been the case in previous literature.

3. SETTING UP THE EXPERIMENTS

In this paper we want to explore experimentally the space of a number of xorshift-based
generators. Our purpose is to identify variants with full period which have particularly good
statistical properties, and test whether claims about good parameters made in the previous
literature are confirmed.

The basic idea is that of sampling the generators by executing a battery of tests starting
with 100 different seeds that are equispaced in the state space. More precisely, if the state
is made of n bits we use the seeds 1 + ib2n/100c, 0 ≤ i < 100. The tests produce a number
of statistics, and we decided to use as score the number of failed tests. A higher score, thus,
means lower quality. Running multiple tests makes it easy to rule out spurious failures, as
suggested also by Rukhin et al. [2001] in the context of cryptographic applications.2

We use two tools to perform our tests. The first and most important is TestU01, a test
suite developed by L’Ecuyer and Simard [2007] that contains several tests oriented towards
the generation of uniform real numbers in [0 . . 1).3 We also perform tests using Dieharder, a
suite of tests developed by Brown [2013], both as a sanity check and to compare the power
of the two suites. Dieharder contains all original tests from Marsaglia’s Diehard, plus many
more additional tests. We refer frequently to the specific type of tests failed: the reader can
refer to the TestU01 and Dieharder documentation for more information.

We consider a test failed if its p-value is outside of the interval [0.001 . . 0.999]. This is
the interval outside which TestU01 reports a test by default. Sometimes a much stricter
threshold is used (For instance, L’Ecuyer and Simard [2007] use [10−10 . . 1 − 10−10] when
applying TestU01 to a variety of generators), and weaker p-values are called suspicious
values, but since we are going to repeat the test 100 times we can use relatively weak p-
values: spurious failures will appear rarely, and we can catch borderline cases (e.g., tests
failing on 50% of the seeds) that give us useful information.

We call systematic a failure that happens for all seeds. For all such failures in our tests,
p-values are smaller than 10−15. Thus, all conclusions drawn in this paper based on system-

2We remark that, arguably, a more principled choice would be choosing seeds that are equispaced in the
sequence of states traversed by the generator. Unfortunately, this is possible only for generators with “jump-
ahead” primitives, and we want our methodology to be universal. We checked that all sequences of states
used in our tests on generators with 64 bits of state do not overlap. The chance that this happens with
more than 128 bits of state is negligible.
3We use the double-dot notation for intervals introduced by C. A. R. Hoare and Lyle Ramshaw [Graham
et al. 1994].

4 S. Vigna

atic failures would not change even if we lowered significantly the failure threshold. More
generally, 90% of the p-values of failed tests are actually smaller than 10−6.

We remark that our choice (counting the number of failures) is somewhat rough; for
example, we consider the same failure a p-value very close to 0 and a p-value just below
0.001. Indeed, other, more sophisticated methods might be used to aggregate the result of
our samples: combining p-values, for instance, or computing a p-value of p-values [Rukhin
et al. 2001]. However, our choice is very easy to interpret, and multiple samples partially
compensate this problem (spurious failures will appear in few samples).

Of course, the number of experiments is very large—in fact, our experiments were carried
out using hundreds of cores in parallel and, overall, they add up to more than a century of
computational time. Our strategy is to apply a very fast test to all generators and seeds,
in the hope of isolating a small group of generators that behave significantly better with
respect to these tests. Stronger tests can then be applied to this subset. The same strategy
has been followed by Panneton [2004] in the experimental study of xorshift generators
contained in his Ph.D. thesis.

TestU01 offers three different predefined batteries of tests (SmallCrush, Crush and
BigCrush) with increasing computational cost and increased difficulty. Unfortunately,
Dieharder does not provide such a segmentation.

Note that Dieharder has a concept of “weak” success and a concept of “failure”, depending
on the p-value of the test, and we used command-line options to align its behavior with that
of TestU01: a p-value outside of the range [0.001 . . 0.999] is a failure. Moreover, we disabled
the initial timing tests so that exactly the same stream of 64-bit numbers is fed to the two
test suites.

In both cases we implemented our own xorshift generator. Some care is needed in this
phase, as both TestU01 and Dieharder are inherently 32-bit test suites: since we want to
test xorshift as a 64-bit generator, it is important that all bits produced are actually
fed into the test. For this reason, we implemented the generation of a uniform real value in
[0 . . 1) by dividing the output of the generator by 264, but we implemented the generation of
uniform 32-bit integer values by returning first the lower and then the upper 32 bits of each
64-bit generated value.4 A possible downside of this approach is that we might fail to detect
some failure in the high bits (of the 64-bit, full output) due to the interleaving process:
however, the fact that in our tests xorshift generators generate many more failures than
those reported previously [Panneton and L’Ecuyer 2005] suggests that the approach is well
founded.

An important consequence of this choice is that some of the bits are actually not used at
all. When analyzing pseudorandom real numbers in the unit interval, there is an unavoid-
able bias towards high bits, as they are more significant. The very lowest bits have lesser
importance and will in any case be perturbed by numerical errors. For this reason, it is a
good practice to run tests both on a generator and on its reverse5 [Press et al. 2007]. In
our case, this is even more necessary, as the lowest eleven bits returned by the generator
are not used at all due to the fact that the mantissa of a 64-bit floating-point number is
formed by 53 bits only.

A recent example shows the importance of testing the reverse generator. Saito and Mat-
sumoto [2014] propose a different way to eliminate linear artifacts: instead of multiplying
the output of an underlying xorshift generator (with 128 bits of state and based on 32-bit
shifts) by a constant, they add it (in Z/232Z) with the previous output. Since the sum
in Z/232Z is not linear over Z/2Z, the result should be free of linear artifacts. However,
while their generator passes BigCrush, its reverse fails systematically the LinearComp, Ma-

4If a real value is generated when the upper 32 bits of the last value are available, they are simply discarded.
5That is, on the generator obtained by reversing the order of the 64 bits returned.

An experimental exploration of Marsaglia’s xorshift generators, scrambled 5

trixRank, MaxOft and Permutation test of BigCrush, which highlights a significant weakness
in its lower bits.

We remark that in this paper we do not pursue the search for equidistribution—the
property that all tuples of consecutive values, seen as vectors in the unit cube, are evenly
distributed, as done, for instance, by Panneton and L’Ecuyer [2005]. Brent [2010] has already
argued in detail that for long-period generators equidistribution is not particularly desirable,
as it is a property of the whole sequence produced by the generator, and in the case of
a long-period generator only a minuscule fraction of the sequence can be actually used.
Moreover, equidistribution is currently impossible to evaluate exactly for long-period non-
linear generators, and in the formulation commonly used in the literature it is known to be
biased towards the high bits [L’Ecuyer and Panneton 2005]: for instance, the WELL1024a
generator has been designed to be maximally equidistributed [Panneton et al. 2006], and
indeed it has measure of equidistribution ∆1 = 0, but the generator obtained by reversing
its bits has ∆1 = 366: a quite counterintuitive result, as in general we expect all bits to be
equally important.

Another problem with equidistribution is that it is intrinsically unstable, unless we restrict
its usage to the class of linear generators, only. Indeed, if we take a maximally equidistributed
sequence, no matter how long, and we flip the most significant bit of a single element of the
sequence, the new sequence will have the worst possible ∆1. For instance, by flipping the
most significant bit of a single chosen value out of the output of WELL1024a we can turn its
equidistribution measure to ∆1 = 4143. But for any statistical or practical purpose the two
sequences are indistinguishable—we are modifying one bit out of 25(21024− 1). However, in
general this paradoxical behaviour is not a big issue, because the modified sequence can no
longer be emitted by a linear generator.

We note that since multiplication by an invertible constant induces a permutation of the
space of 64-bit values (and thus of t-tuples of such values), it preserves some of the equidis-
tribution properties of the underlying generator (this is true of any bijective scrambling
function); more details will be given in the rest of the paper.

4. RESULTS FOR xorshift64 GENERATORS

First of all, all generators fail at all seeds the MatrixRank test from TestU01’s SmallCrush
suite.6 A score-rank plot7 of the SmallCrush scores for all generators is shown in Figure 2.
The plot associates with abscissa x the number of generators with x or more failures. We
observe immediately that there is a wide range of quality among the generators examined.
The “bumps” in the plot corresponds to new tests failed systematically.

A closer inspection would confirm that there is just a weak correlation between scores
of algorithms conjugate by reversal, because of the bias of TestU01 towards high bits. We
thus report in Table I reports the best four generators by combined scores (i.e., adding
the scores of conjugate generators), which are the only ones failing systematically just the
MatrixRank test. The table reports also results for the generator A0(13, 7, 17) suggested by
Marsaglia in his original paper, claiming that it “will provide an excellent period 264 − 1
RNG, [. . .] but any of the above 2200 choices is likely to do as well”. Clearly, this is not
the case: A0(13, 7, 17)/A1(13, 7, 17) ranks 655 in the combined SmallCrush ranking and fails
systematically several tests.

6Panneton and L’Ecuyer [2005] reports that half of the generators fail this test, but the authors have chosen
to use only 32 of the 64 generated bits as output bits, in practice applying a kind of decimation to the
output of the generator.
7Score-rank plots are the numerosity-based discrete analogous of the complementary cumulative distribution
function of scores. They give a much clearer picture than frequency dot plots when the data points are
scattered and highly variable.

6 S. Vigna

 0

 500

 1000

 1500

 2000

 2500

 100 1000

R
a
n

k

SmallCrush score

Fig. 2. Score-rank plot of the distribution of SmallCrush scores for the 2200 possible full-period xorshift64
generators.

Table I. Best four xorshift64 generators following SmallCrush.

Algorithm Failures Conjugate Failures Overall W

A2(11, 31, 18) 111 A3(11, 31, 18) 120 231 25

A2(8, 29, 19) 155 A3(8, 29, 19) 115 270 35

A0(8, 29, 19) 159 A1(8, 29, 19) 112 271 35

A0(11, 31, 18) 130 A1(11, 31, 18) 150 280 25

A0(13, 7, 17) 276 A1(13, 7, 17) 802 1078 25

Table II. The generators of Table I tested with BigCrush.

Algorithm Failures Conjugate Failures Overall

A2(11, 31, 18) 762 A3(11, 31, 18) 750 1512

A2(8, 29, 19) 747 A3(8, 29, 19) 780 1527

A0(8, 29, 19) 749 A1(8, 29, 19) 884 1633

A0(11, 31, 18) 748 A1(11, 31, 18) 926 1674

A2(4, 35, 21) 961 A3(4, 35, 21) 1444 2405

A0(13, 7, 17) 1049 A1(13, 7, 17) 5454 6503

Sanity check 1. Is the result of our experiments dependent on our seed choice? To an-
swer this question, we repeated our experiments on xorshift64 generators with SmallCrush
on a different set of seeds, namely the integers in the interval [1 . . 100]. Kendall’s τ [Kendall
1938; 1945] between the two rankings is 0.98, which makes it clear that the dependence on
the seed is negligible. In particular, the four best conjugate pairs in Table I are the same
with both seeds.

To gather more information, we ran the full BigCrush suite and Dieharder on our four
best generators, on Marsaglia’s choice and on the best choice from “Numerical Recipes”:
the results are given in Tables II and III. Even the four best generators fail now systemat-
ically the BirthdaySpacings, MatrixRank and LinearComp tests. The first two generators,
however, turn out to perform slightly better than other two. We also notice that BigCrush
draws a much thicker line between our four best generators and the other ones, which now
fail several more tests. Not surprisingly, Dieharder cannot really separate our four best
generators from A2(4, 35, 21)/A3(4, 35, 21).

An experimental exploration of Marsaglia’s xorshift generators, scrambled 7

Table III. The generators of Table I tested with Dieharder.

Algorithm Failures Conjugate Failures Overall

A2(11, 31, 18) 182 A3(11, 31, 18) 162 344

A2(8, 29, 19) 179 A3(8, 29, 19) 181 360

A0(8, 29, 19) 176 A1(8, 29, 19) 182 358

A0(11, 31, 18) 181 A1(11, 31, 18) 186 367

A2(4, 35, 21) 189 A3(4, 35, 21) 187 376

A0(13, 7, 17) 183 A1(13, 7, 17) 1352 1535

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

E
q

u
id

is
tr

ib
u

ti
o

n
 s

co
re

 (
co

m
b
in

ed
)

SmallCrush score (combined)

Fig. 3. Scatter plot of the combined SmallCrush score of conjugate xorshift64 generators versus the
combined equidistribution score.

4.1. Equidistribution

It is interesting to compare the ranking provided by equidistribution properties and that
provided by statistical tests. Note that a xorshift64 generator is 1-dimensionally equidis-
tributed, that is, every 64-bit value appears exactly once except for zero. We refer to the
already quoted paper by Panneton and L’Ecuyer [2005] for a detailed description of the
equidistribution statistics ∆1, the sum of dimension gaps: a lower value is better. A max-
imally distributed generator has ∆1 = 0, and we will refer to ∆1 as to the equidistribution
score. We computed the equidistribution score for all generators using the implementation
of Harase’s algorithm [Harase 2011] contained in the MTToolBox package from Saito [2013].
Similarly to SmallCrush scores, ∆1 has high-bits bias, and a quite strong one [L’Ecuyer and
Panneton 2005]. For a fair comparison, we to thus combine the ∆1 score of a generator and
of its reverse.

Figure 3 shows that there is some correlation (τ = 0.58) between combined SmallCrush
scores and combined equidistribution scores. Nonetheless, even if equidistribution is able to
detect reliably generators with a very bad SmallCrush score, is not so good at detecting the
generators with the best score, as is visible from the quite noisy lower left part of the plot.
Indeed, when we restrict our attention to the best 30 generators (by combined SmallCrush
scores) Kendall’s τ drops to 0.3. The first two generators by combined equidistribution
score, A4(8, 29, 19) and A6(8, 29, 19), rank 20 (combined score 361) and 170 (score 596) in
the combined SmallCrush test. When analyzed with the more powerful lens of BigCrush,
they have combined scores 3441 and 4082, respectively, and fail systematically almost twenty
additional tests with respect to the top four generators of Table II. Definitely, choosing
among xorshift64 generators by equidistribution score alone is not a good idea.

8 S. Vigna

Table IV. The three multipliers used in the rest of the paper. The subscripts recalls the t for
which they have good figures of merit.

M32 = 2685821657736338717 M8 = 1181783497276652981 M2 = 8372773778140471301

5. AN INTRODUCTION TO xorshift64* GENERATORS

Since a xorshift64 generator exhibits evident linearity artifacts, the next obvious step is to
perturb its output using a nonlinear (in Z/2Z sense) transformation. A natural candidate is
multiplication by a constant, also because such operation is very fast in modern processors.
Note that the current state of the generator is multiplied by a constant before returning it,
but the state itself is not affected by the multiplication: thus, the period is the same.

We call such a generator xorshift*. By choosing a constant invertible modulo 264 (i.e.,
odd), we can guarantee that the generator will output a permutation of the sequence output
by the underlying xorshift generator.

This approach was noted in passing in Marsaglia’s paper, and it is also proposed in a
more systematic way in the third edition of “Numerical Recipes” [Press et al. 2007] to
create a very fast, good-quality pseudorandom number generator. However, in the latter
case the authors first compute allegedly good triples for xorshift using Diehard (with
results markedly different from ours, and in strident contrast with TestU01’s results, as
discussed in Section 4) and then choose a multiplier. There is no reason why the best triples
for a xorshift64 generator (which are computed empirically) should continue to be such
in a xorshift64* generator: and indeed, we will see that this is not the case.

We thus repeated the experiments of the previous section on xorshift64* generators. To
choose scrambling constants, we followed the heuristic considerations of [Press et al. 2007].
We consider primitive (e.g., full-period) elements of the multiplicative group of Z/264Z:
these elements have no fixed point except for zero, which is a very desirable property
for a scrambling function. Moreover, we choose from L’Ecuyer [1999] primitive elements
that have good qualities as multiplicative congruential linear generators, as we expect that
multiplication by such elements will combine bits in a non-trivial way.

We use a standard theoretical measure of quality, the figure of merit, which is a normal-
ized best distance between the hyperplanes of families covering tuples of length t given by
successive outputs of the generators (see L’Ecuyer [1999] for details). Since t is an additional
parameter, to further understand the dependency on the multiplier we used three different
multipliers, shown in Table IV, which have good figures of merit for different t’s. The first
multiplier, M32 (the one used in [Press et al. 2007]) and the second, M8, have been taken
from L’Ecuyer [1999]. The third, M2, was kindly provided by Richard Simard.

We remark that many other choices for scrambling the output of a generator are possible,
like adding or xoring a fixed word, xoring the output with the output of another generator,
or using a bijective function with strong avalanching behavior, such as those used in the
construction of high-quality hash functions. The three factors we considered in our choice
are: speed, good results in statistical test suites, and preservation of some equidistribution
properties (similarly to the approach taken in [L’Ecuyer and Granger-Piché 2003]). For
instance, xoring with an additive Weyl generator (another suggestion in Marsaglia’s paper)
makes it in general impossible to prove any equidistribution property—not even that all 64-
bit value except for zero are output by the generator. Multiplication by a constant is a very
fast operation in modern processor, and mixing linear operations on Z/2Z with operations
in the ring Z/264Z is a standard technique to avoid visible artifacts from either type of
algebraic structure. A drawback is that the lowest bit is, in fact, not scrambled, and thus
it is identical to the lowest bit of the underlying xorshift generator.8

8As remarked by one of the referees, since our multipliers are all equal to 1 modulo 4, this is true also of
the second-lowest bit.

An experimental exploration of Marsaglia’s xorshift generators, scrambled 9

 1

 10

 100

 1000

 1 10 100 1000

S
m

a
ll

C
ru

sh
 s

c
o

re
 (

re
v

e
rs

e
)

SmallCrush score (standard)

Fig. 4. Scatter plot of the SmallCrush score of xorshift64* generators and their reverse.

 0

 500

 1000

 1500

 2000

 2500

0 1 10 100 1000

R
a
n
k

SmallCrush Score

Standard

Reverse

Combined

Fig. 5. Score-rank plot of the distribution of SmallCrush scores for the 2200 possible xorshift64* generators
with multiplier M32.

6. RESULTS FOR xorshift64* GENERATORS

The scatter plot in Figure 4 shows that there is essentially no correlation between the scores
assigned by SmallCrush to a generator and its reverse (τ = 0.15).9 Another interesting
observation on Figure 4 is that the lower right half is essentially empty. So bad generators
have a bad reverse, but there are good generators with a very bad reverse. This suggests
that the quality of a xorshift64* generator can vary wildly from the low to the high bits.

A score-rank plot of the SmallCrush scores for all generators shown in Figure 5 provides
us with further interesting information: almost all generators have no systematic failure,
but only about half of the reverse generators have no systematic failure. Moreover, the
distribution of standard generators degrades smoothly, whereas the distribution of reverse
generators sports again the “bump” phenomenon we observed in Figure 2.

Since we need to reduce the number of candidates to apply stronger tests, in the case of
M32 we decided to restrict our choice to generators with 3 overall failed tests or less, which
left us with 152 generators. Similar cutoff points were chosen for M8 and M2.

9We report plots only for M32, as the ones for the other multipliers are visually identical.

10 S. Vigna

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

C
ru

sh
 s

c
o

re
 (

re
v

e
rs

e
)

Crush score (standard)

 1

 10

 100

 1000

 1 10 100 1000

D
ie

h
a
rd

e
r

sc
o

re
 (

re
v

e
rs

e
)

Dieharder score (standard)

Fig. 6. Scatter plots for Crush (left) and Dieharder (right) scores on xorshift64* generators with multiplier
M32 and their reverse, for the 152 best generators.

 10

 100

 1000

 10 100 1000 10000

D
ie

h
a
rd

e
r

s
c
o

re

Crush score

Fig. 7. A scatter plot of Crush and Diehard combined scores of the 152 SmallCrush-best xorshift64*
generators. The plot is in log-log scale to accommodate some very high values returned by Crush on reverse
generators. The lower-left “sweet spot” corner contains generators that never fail systematically (not even
reversed) in both test suites.

These generators were few enough so that we could apply both Crush and Dieharder.
Once again, we examine the correlation between the score of a generator and its reverse by
means of the scatter plots in Figure 6, which confirm the high-bits bias, albeit less so in the
Dieharder case.

In Figure 7 we compare instead the two scores (Crush and Dieharder) available. The most
remarkable feature is there are no points in the upper left corner: there is no generator that
is considered good by Crush but not by Dieharder. On the contrary, Crush heavily penalizes
(in particular because of the score on the reverse generator) a large number of generators.
The generators we will select in the end all belong to the small cloud in the lower left corner,
where the two test suite agree.

The score-rank plot in Figure 8 shows that our strategy pays off: we started with 152
generators with less than three failures, but analyzing them with the more powerful lens
provided by Crush we get a much more fine-grained analysis: in particular, only 73 of them
give no systematic failure, and they all belong to the “sweet spot” of Figure 7, that is, they
do not give any systematic failure in Dieharder, too.

An experimental exploration of Marsaglia’s xorshift generators, scrambled 11

 0

 20

 40

 60

 80

 100

 120

 140

 160

100 1000

R
a
n

k

Crush Score

Standard

Reverse

Combined

Fig. 8. Score-rank plot of the distribution of Crush scores for the 152 SmallCrush-best xorshift64* gen-
erators using multiplier M32.

Finally, we selected for each multiplier the eight generators with the best Crush scores,
and applied the BigCrush suite: we obtained several generators failing systematically the
MatrixRank test only and shown in Table V (which should be compared with Table II).

6.1. Equidistribution

Multiplication by an invertible element just permutes the elements of Z/264Z leaving
zero fixed, so a xorshift64* generator, like the underlying xorshift64 generator, is 1-
dimensionally equidistributed.

7. HIGH DIMENSION

Marsaglia [2003] describes a strategy for xorshift generators in high dimension: the idea
is to use always three low-dimensional shifts, but locating them in the context of a larger
t× t block matrix of the form

M =

0 0 0 · · · 0 (I + La)(I +Rb)
I 0 0 · · · 0 0
0 I 0 · · · 0 0
0 0 I · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · I (I +Rc)

Marsaglia notes that even in this restricted form there are matrices of full period (he provides
examples for 32-bit shifts up to 160 bits). However, this route has not been explored for
high-dimensional (say, more than 1024 bits of state) generators. The only similar approach
is that proposed by Brent [2007] with his xorgens generators, which however uses four
shifts. The obvious question is thus: is the additional shift really necessary to pass a strong
statistical test such as BigCrush? We are thus going to look for good, full-period generators
with 1024 or 4096 bits of state using 64-bit basic shifts.10

10The reason why the number 4096 is relevant here is that we know the factorization of Fermat’s numbers

22
k

+ 1 only up to k = 11. When more Fermat numbers will be factorized, it will be possible to design
xorshift or xorgens generators with larger state space [Brent 2007]. Note that, however, in practice a
period of 21024 − 1 is more than sufficient for any purpose. For example, even if 2100 computers were to
generate sequences of 2100 numbers starting from random seeds using a generator with period 21024, the
chances that two sequences overlap would be less than 2−724.

12 S. Vigna

Table V. Results of BigCrush on the best eight
xorshift64* generators found by SmallCrush
and Crush in sequence. The generators fail
systematically only MatrixRank.

Algorithm
Failures

W
S R +

M32

A7(11, 5, 45) 226 128 354 23

A7(17, 23, 52) 232 130 362 25

A1(12, 25, 27) 230 133 363 31

A1(17, 23, 29) 229 137 366 21

A5(14, 23, 33) 238 132 370 32

A5(17, 47, 29) 231 141 372 24

A1(16, 25, 43) 238 138 376 31

A7(23, 9, 57) 242 134 376 19

M8

A5(11, 5, 32) 229 122 351 13

A2(8, 31, 17) 229 126 355 21

A5(3, 21, 31) 230 141 371 33

A3(17, 45, 22) 241 133 374 27

A4(8, 37, 21) 239 136 375 33

A3(13, 47, 23) 232 144 376 27

A3(13, 35, 30) 244 136 380 27

A4(9, 37, 31) 243 141 384 27

M2

A7(13, 19, 28) 228 128 356 23

A3(9, 21, 40) 228 132 360 35

A1(14, 23, 33) 234 142 376 29

A7(19, 43, 27) 239 137 376 23

A1(17, 47, 28) 240 137 377 25

A5(16, 11, 27) 234 144 378 25

A4(4, 35, 15) 230 149 379 35

A7(13, 21, 18) 238 144 382 31

The output of such generators will be given by the last 64 bits of the state. It is well
known [Brent 2004; Niederreiter 1992] that every bit of state satisfies a linear recurrence
(defined by the characteristic polynomial) with full period, so a fortiori the last 64 bits
have full period, too.

Since we already know that some deficiencies of low-dimensional xorshift generators
are well corrected by multiplication by a constant, we will follow the same approach, thus
looking for good xorshift* generators of high dimension.11 Note that since multiplication
by an integer invertible in Z/264Z is a permutation of Z/264Z, a high-dimension xorshift*
generator has the same period of the underlying xorshift generator.

We cannot in principle claim full period if we look at a single bit of the output of
a xorshift* generator; but this property can be easily proved by purely combinatorial
means:

11As in the xorshift64 case, different choices for the shifts are possible. We will not pursue them here.

An experimental exploration of Marsaglia’s xorshift generators, scrambled 13

Proposition 7.1. Let x0, x1, . . . , x2n−2 be a list of 2t-bit values, t ≤ n, such that
every value appears 2n−t times, except for 0, which appears 2n−t− 1 times. Then, for every
fixed bit k the associated sequence has period 2n − 1.

Proof. Suppose that there is a k and a p | 2n − 1 such that the k-th bit of x0, x1,
. . . , x2n−2 has period p (that is, the sequence of bits associated with the k-th bit is made by
(2n − 1)/p repetitions of the same sequence of p bits). The k-th bit runs through 2n−1 − 1
zeroes and 2n−1 ones (as there is a missing zero in the output sequence). This means
that (2n − 1)/p | 2n−1, too, as the same number of ones must appear in every repeating
subsequence, and since (2n − 1)/p is odd this implies p = 2n − 1.

Corollary 7.2. Every bit of the output of a full-period xorshift* generator has full
period.

7.1. Finding good shifts

The first step is identifying values of a, b and c for which the generator has maximum
period using the primitivity check on the characteristic polynomial. We performed these
computations using the algebra package Fermat [Lewis 2018], with the restriction that
a + b ≤ 64 and that a is coprime with b (see [Brent 2007] for the rationale behind this
choices, which significantly reduce the search space). The resulting sets of values are those
shown in Table VI and VIII.

For a state of 1024 bits, we obtain 20 possible parameter choices, which we examined in
combination with our three multipliers both through BigCrush and through Dieharder. The
results, reported in Table VI and VII, are excellent: with the exception of two pathological
choices, no test is failed systematically. For a state of 4096 bits (Table VIII and IX) there
are 10 possible parameter choices, and no generator fails a test systematically.

7.2. Equidistribution

Looking at the shape of the matrix defining high-dimensional xorshift generators it is clear
that if the state is made of n bits the last n/64 output values, concatenated, are equal to
the current state. This implies that such generators are n/64-dimensionally equidistributed
(i.e., every n/64-tuple of consecutive 64-bit values appears exactly once, except for a miss-
ing tuple of zeroes), so xorshift1024 generators are 16-dimensionally equidistributed and
xorshift4096 generators are 64-dimensionally equidistributed. Since multiplication by a
constant just permutes the space of tuples, the same is true of the associated xorshift*
generators.

8. JUMPING AHEAD

The simple form of a xorshift generator makes it trivial to jump ahead quickly by any
number of next-state steps. If v is the current state, we want to compute vM j for some
j. But M j is always expressible as a polynomial in M of degree lesser than that of the
characteristic polynomial. To find such a polynomial it suffices to compute xj mod P (x),
where P (x) is the characteristic polynomial of M . Such a computation can be easily carried

out using standard techniques (quadratures to find x2
k

mod P (x), etc.), leaving us with a
polynomial Q(x) such that Q(M) = M j . Now, if

Q(x) =

n∑
i=0

αix
i,

we have

vM j = vQ(M) =

n∑
i=0

αivM
i,

14 S. Vigna

T
a

b
le

V
I.

R
esu

lts
o

f
B

ig
C

ru
sh

o
n

th
e
x
o
r
s
h
i
f
t
1
0
2
4
*

g
en

era
tors.

T
h

e
la

st
tw

o
g

en
era

tors
fa

il
system

a
tica

lly
C

o
u

p
o

n
C

o
llector,

G
a

p
,

H
a

m
m

in
g

In
d

ep
,

M
a

trixR
a

n
k

,
S

u
m

C
o

llector
a

n
d

W
eig

h
tD

istrib
.

M
3
2

M
8

M
2

a
,
b,

c
F

a
ilu

res
W

S
R

+

2
7
,

1
3
,

4
6

2
5

3
1

5
6

2
7
5

3
1
,

3
3
,

3
7

2
8

3
2

6
0

7
9

2
2
,

7
,

4
8

3
7

2
4

6
1

2
2
3

7
,

1
6
,

5
5

3
7

2
6

6
3

6
5

9
,

1
4
,

4
1

2
3

4
0

6
3

1
6
7

4
1
,

7
,

2
9

2
8

3
7

6
5

2
6
5

1
,

1
3
,

7
3
4

3
4

6
8

1
1
3

1
0
,

1
1
,

6
1

3
2

3
6

6
8

1
5
5

9
,

5
,

6
0

4
4

2
8

7
2

2
2
7

1
6
,

2
3
,

3
0

3
7

3
6

7
3

5
9

3
,

2
6
,

3
5

4
5

2
9

7
4

8
9

2
5
,

8
,

1
5

4
2

3
4

7
6

2
8
1

3
1
,

1
1
,

3
0

3
5

4
3

7
8

3
6
3

4
0
,

1
1
,

3
1

3
8

4
0

7
8

7
7

3
1
,

1
0
,

2
7

3
4

4
5

7
9

2
3
3

2
,

1
1
,

6
1

4
3

4
0

8
3

8
1

1
5
,

1
6
,

1
9

4
5

3
9

8
4

2
5
5

1
0
,

9
,

6
3

3
9

5
1

9
0

6
9

5
1
,

1
,

4
6

3
1

8
9
0

9
2
1

1
1
1

4
7
,

1
,

4
1

5
0

9
0
2

9
5
2

9
9

a
,
b,

c
F

a
ilu

res
W

S
R

+

1
,

1
3
,

7
2
8

1
9

4
7

1
1
3

3
,

2
6
,

3
5

2
9

2
2

5
1

8
9

4
0
,

1
1
,

3
1

2
4

3
3

5
7

7
7

1
5
,

1
6
,

1
9

3
0

3
2

6
2

2
5
5

2
2
,

7
,

4
8

2
9

3
3

6
2

2
2
3

9
,

1
4
,

4
1

3
2

3
0

6
2

1
6
7

4
1
,

7
,

2
9

2
5

3
8

6
3

2
6
5

3
1
,

1
1
,

3
0

3
3

3
2

6
5

3
6
3

2
,

1
1
,

6
1

2
5

4
1

6
6

8
1

1
0
,

1
1
,

6
1

4
2

2
5

6
7

1
5
5

7
,

1
6
,

5
5

3
2

3
5

6
7

6
5

1
6
,

2
3
,

3
0

3
5

3
4

6
9

5
9

2
5
,

8
,

1
5

2
5

4
5

7
0

2
8
1

2
7
,

1
3
,

4
6

3
9

3
2

7
1

2
7
5

3
1
,

1
0
,

2
7

4
0

3
2

7
2

2
3
3

9
,

5
,

6
0

4
0

3
6

7
6

2
2
7

3
1
,

3
3
,

3
7

3
9

3
9

7
8

7
9

1
0
,

9
,

6
3

3
1

4
9

8
0

6
9

5
1
,

1
,

4
6

6
0

8
9
6

9
5
6

1
1
1

4
7
,

1
,

4
1

6
7

9
0
7

9
7
4

9
9

a
,
b,

c
F

a
ilu

res
W

S
R

+

3
,

2
6
,

3
5

2
9

2
4

5
3

8
9

2
7
,

1
3
,

4
6

4
1

2
0

6
1

2
7
5

2
5
,

8
,

1
5

3
8

2
4

6
2

2
8
1

3
1
,

1
0
,

2
7

3
6

3
1

6
7

2
3
3

9
,

5
,

6
0

2
4

4
3

6
7

2
2
7

1
,

1
3
,

7
2
8

4
2

7
0

1
1
3

1
5
,

1
6
,

1
9

3
6

3
4

7
0

2
5
5

2
,

1
1
,

6
1

4
0

3
0

7
0

8
1

4
1
,

7
,

2
9

3
6

3
4

7
0

2
6
5

9
,

1
4
,

4
1

3
3

3
7

7
0

1
6
7

2
2
,

7
,

4
8

3
7

3
5

7
2

2
2
3

3
1
,

1
1
,

3
0

4
5

2
7

7
2

3
6
3

7
,

1
6
,

5
5

3
6

3
9

7
5

6
5

3
1
,

3
3
,

3
7

3
7

3
9

7
6

7
9

1
0
,

1
1
,

6
1

4
1

3
7

7
8

1
5
5

1
6
,

2
3
,

3
0

4
4

3
7

8
1

5
9

4
0
,

1
1
,

3
1

3
8

4
8

8
6

7
7

1
0
,

9
,

6
3

4
8

4
8

9
6

6
9

5
1
,

1
,

4
6

3
1

7
9
9

8
3
0

1
1
1

4
7
,

1
,

4
1

4
7

7
9
9

8
4
6

9
9

An experimental exploration of Marsaglia’s xorshift generators, scrambled 15

T
a

b
le

V
II

.
R

es
u

lt
s

o
f

D
ie

h
ar

d
er

o
n
x
o
r
s
h
i
f
t
1
0
2
4
*

g
en

er
a

to
rs

.
N

o
te

st
is

fa
il
ed

sy
st

em
a

ti
ca

ll
y.

M
3
2

M
8

M
2

a
,
b,

c
F

a
il

u
re

s
W

S
R

+

3
1
,

3
3
,

3
7

5
7

6
7

1
2
4

7
9

3
1
,

1
1
,

3
0

6
5

6
1

1
2
6

3
6
3

1
6
,

2
3
,

3
0

7
4

5
6

1
3
0

5
9

4
1
,

7
,

2
9

7
1

6
1

1
3
2

2
6
5

9
,

1
4
,

4
1

7
4

6
4

1
3
8

1
6
7

1
0
,

9
,

6
3

7
4

6
6

1
4
0

6
9

2
2
,

7
,

4
8

6
6

7
5

1
4
1

2
2
3

5
1
,

1
,

4
6

7
8

6
3

1
4
1

1
1
1

2
7
,

1
3
,

4
6

6
3

7
9

1
4
2

2
7
5

2
5
,

8
,

1
5

8
0

6
4

1
4
4

2
8
1

3
,

2
6
,

3
5

8
1

6
6

1
4
7

8
9

2
,

1
1
,

6
1

7
9

7
1

1
5
0

8
1

4
0
,

1
1
,

3
1

7
4

7
6

1
5
0

7
7

3
1
,

1
0
,

2
7

8
2

7
1

1
5
3

2
3
3

4
7
,

1
,

4
1

7
4

7
9

1
5
3

9
9

9
,

5
,

6
0

8
1

7
5

1
5
6

2
2
7

1
0
,

1
1
,

6
1

7
5

8
4

1
5
9

1
5
5

1
5
,

1
6
,

1
9

7
2

8
8

1
6
0

2
5
5

7
,

1
6
,

5
5

9
4

6
8

1
6
2

6
5

1
,

1
3
,

7
8
7

7
6

1
6
3

1
1
3

a
,
b,

c
F

a
il
u

re
s

W
S

R
+

2
5
,

8
,

1
5

6
7

5
6

1
2
3

2
8
1

1
6
,

2
3
,

3
0

7
7

5
4

1
3
1

5
9

7
,

1
6
,

5
5

6
6

6
6

1
3
2

6
5

3
,

2
6
,

3
5

6
0

7
5

1
3
5

8
9

1
0
,

1
1
,

6
1

6
3

7
4

1
3
7

1
5
5

3
1
,

1
0
,

2
7

7
4

6
9

1
4
3

2
3
3

3
1
,

3
3
,

3
7

8
6

5
8

1
4
4

7
9

4
7
,

1
,

4
1

8
2

6
2

1
4
4

9
9

2
7
,

1
3
,

4
6

7
8

6
9

1
4
7

2
7
5

3
1
,

1
1
,

3
0

8
5

6
2

1
4
7

3
6
3

1
0
,

9
,

6
3

6
5

8
6

1
5
1

6
9

4
1
,

7
,

2
9

8
4

6
8

1
5
2

2
6
5

2
,

1
1
,

6
1

8
8

6
5

1
5
3

8
1

9
,

1
4
,

4
1

7
7

8
0

1
5
7

1
6
7

4
0
,

1
1
,

3
1

8
2

7
8

1
6
0

7
7

1
5
,

1
6
,

1
9

8
5

7
6

1
6
1

2
5
5

5
1
,

1
,

4
6

9
2

7
4

1
6
6

1
1
1

2
2
,

7
,

4
8

9
0

8
2

1
7
2

2
2
3

1
,

1
3
,

7
7
9

9
5

1
7
4

1
1
3

9
,

5
,

6
0

9
7

8
9

1
8
6

2
2
7

a
,
b,

c
F

a
il
u

re
s

W
S

R
+

2
2
,

7
,

4
8

5
6

7
6

1
3
2

2
2
3

1
5
,

1
6
,

1
9

6
6

6
7

1
3
3

2
5
5

1
0
,

9
,

6
3

7
0

7
1

1
4
1

6
9

5
1
,

1
,

4
6

6
5

7
8

1
4
3

1
1
1

1
,

1
3
,

7
8
0

6
4

1
4
4

1
1
3

4
0
,

1
1
,

3
1

8
0

6
7

1
4
7

7
7

2
,

1
1
,

6
1

8
5

6
5

1
5
0

8
1

3
1
,

1
1
,

3
0

7
5

7
5

1
5
0

3
6
3

2
5
,

8
,

1
5

7
4

7
7

1
5
1

2
8
1

1
0
,

1
1
,

6
1

7
9

7
6

1
5
5

1
5
5

4
7
,

1
,

4
1

7
0

8
6

1
5
6

9
9

9
,

5
,

6
0

7
0

8
6

1
5
6

2
2
7

1
6
,

2
3
,

3
0

8
1

7
6

1
5
7

5
9

2
7
,

1
3
,

4
6

7
8

8
0

1
5
8

2
7
5

7
,

1
6
,

5
5

9
2

7
0

1
6
2

6
5

9
,

1
4
,

4
1

8
7

8
0

1
6
7

1
6
7

4
1
,

7
,

2
9

8
7

8
1

1
6
8

2
6
5

3
1
,

1
0
,

2
7

8
2

8
7

1
6
9

2
3
3

3
,

2
6
,

3
5

9
2

7
9

1
7
1

8
9

3
1
,

3
3
,

3
7

9
8

8
8

1
8
6

7
9

16 S. Vigna

T
a

b
le

V
III.

R
esu

lts
o

f
B

ig
C

ru
sh

o
n
x
o
r
s
h
i
f
t
4
0
9
6
*

g
en

era
tors.

M
3
2

M
8

M
2

A
lg

o
rith

m
F

a
ilu

res
W

S
R

+

1
4
,

4
1
,

1
5

3
3

2
7

6
0

2
4
1

5
,

2
2
,

2
7

3
4

3
0

6
4

4
5

3
0
,

2
9
,

3
9

3
3

3
2

6
5

1
7
7

2
5
,

3
,

4
9

3
0

3
8

6
8

4
4
1

7
,

1
2
,

5
9

4
3

2
5

6
8

1
0
3

1
9
,

3
4
,

1
9

3
4

3
6

7
0

2
9
1

1
2
,

1
1
,

6
1

3
2

3
9

7
1

1
9
5

5
,

2
7
,

2
1

3
4

4
1

7
5

1
8
7

2
3
,

2
6
,

2
9

3
6

4
2

7
8

4
9

1
1
,

9
,

2
5

3
5

4
4

7
9

5
6
7

A
lg

o
rith

m
F

a
ilu

res
W

S
R

+

5
,

2
2
,

2
7

3
4

3
5

6
9

4
5

5
,

2
7
,

2
1

3
6

3
5

7
1

1
8
7

2
5
,

3
,

4
9

3
5

3
7

7
2

4
4
1

7
,

1
2
,

5
9

3
4

3
9

7
3

1
0
3

1
1
,

9
,

2
5

4
0

3
4

7
4

5
6
7

1
2
,

1
1
,

6
1

4
1

3
3

7
4

1
9
5

1
9
,

3
4
,

1
9

3
9

3
5

7
4

2
9
1

1
4
,

4
1
,

1
5

4
3

3
4

7
7

2
4
1

3
0
,

2
9
,

3
9

4
2

3
7

7
9

1
7
7

2
3
,

2
6
,

2
9

3
8

4
3

8
1

4
9

A
lg

o
rith

m
F

a
ilu

res
W

S
R

+

1
1
,

9
,

2
5

3
0

3
3

6
3

5
6
7

5
,

2
7
,

2
1

3
7

2
7

6
4

1
8
7

2
5
,

3
,

4
9

3
3

3
4

6
7

4
4
1

1
9
,

3
4
,

1
9

3
9

3
6

7
5

2
9
1

2
3
,

2
6
,

2
9

4
0

3
5

7
5

4
9

3
0
,

2
9
,

3
9

3
8

3
7

7
5

1
7
7

1
2
,

1
1
,

6
1

4
0

3
7

7
7

1
9
5

1
4
,

4
1
,

1
5

3
6

4
2

7
8

2
4
1

7
,

1
2
,

5
9

3
8

4
4

8
2

1
0
3

5
,

2
2
,

2
7

3
8

5
0

8
8

4
5

An experimental exploration of Marsaglia’s xorshift generators, scrambled 17

T
a

b
le

IX
.

R
es

u
lt

s
o

f
D

ie
h

ar
d

er
o

n
x
o
r
s
h
i
f
t
4
0
9
6
*

g
en

er
a

to
rs

.

M
3
2

M
8

M
2

A
lg

o
ri

th
m

F
a
il
u

re
s

W
S

R
+

2
5
,

3
,

4
9

7
0

7
0

1
4
0

4
4
1

1
2
,

1
1
,

6
1

5
8

8
3

1
4
1

1
9
5

3
0
,

2
9
,

3
9

6
7

7
7

1
4
4

1
7
7

5
,

2
2
,

2
7

6
2

8
4

1
4
6

4
5

1
1
,

9
,

2
5

7
3

7
5

1
4
8

5
6
7

1
9
,

3
4
,

1
9

8
5

6
6

1
5
1

2
9
1

1
4
,

4
1
,

1
5

8
3

7
4

1
5
7

2
4
1

7
,

1
2
,

5
9

7
3

8
5

1
5
8

1
0
3

2
3
,

2
6
,

2
9

7
3

8
8

1
6
1

4
9

5
,

2
7
,

2
1

9
8

6
7

1
6
5

1
8
7

A
lg

o
ri

th
m

F
a
il
u

re
s

W
S

R
+

2
5
,

3
,

4
9

6
7

7
0

1
3
7

4
4
1

1
4
,

4
1
,

1
5

7
2

6
9

1
4
1

2
4
1

3
0
,

2
9
,

3
9

7
0

7
5

1
4
5

1
7
7

1
1
,

9
,

2
5

7
3

7
7

1
5
0

5
6
7

1
2
,

1
1
,

6
1

7
5

8
0

1
5
5

1
9
5

1
9
,

3
4
,

1
9

8
9

6
7

1
5
6

2
9
1

5
,

2
2
,

2
7

9
3

6
5

1
5
8

4
5

2
3
,

2
6
,

2
9

7
2

8
7

1
5
9

4
9

5
,

2
7
,

2
1

7
5

8
4

1
5
9

1
8
7

7
,

1
2
,

5
9

9
0

7
7

1
6
7

1
0
3

A
lg

o
ri

th
m

F
a
il

u
re

s
W

S
R

+

1
9
,

3
4
,

1
9

7
5

6
4

1
3
9

2
9
1

5
,

2
2
,

2
7

6
7

7
7

1
4
4

4
5

2
5
,

3
,

4
9

7
7

7
1

1
4
8

4
4
1

5
,

2
7
,

2
1

7
7

7
1

1
4
8

1
8
7

1
1
,

9
,

2
5

8
1

7
6

1
5
7

5
6
7

1
4
,

4
1
,

1
5

7
9

7
8

1
5
7

2
4
1

2
3
,

2
6
,

2
9

7
4

8
4

1
5
8

4
9

1
2
,

1
1
,

6
1

7
4

8
5

1
5
9

1
9
5

7
,

1
2
,

5
9

8
4

7
9

1
6
3

1
0
3

3
0
,

2
9
,

3
9

7
8

8
9

1
6
7

1
7
7

18 S. Vigna

and now vM i is just the i-th state after the current one. If we known in advance the αi’s,
computing vM j requires just computing the next state for n times, accumulating by xor
the i-th state iff αi 6= 0.12

In general, one needs to compute the αi’s for each desired j, but the practical usage of this
technique is that of providing subsequences that are guaranteed to be non-overlapping. We
can fix a reasonable jump, for example 2512 for a xorshift1024* generator, and store the
αi’s for such a jump as a bit mask. Operating the jump is now entirely trivial, as it requires
at most 1024 state changes. In Figure 12 we show the jump function for the generator of
Figure 11. By iterating the jump function, one can access 2512 non-overlapping sequences
of length 2512 (except for the last one, which will be of length 2512 − 1).

9. COMPARISON

How do our best xorshift* generators score with respect to more complex generators in
the literature? We decided to perform a comparison with the popular Mersenne Twister
MT19937 [Matsumoto and Nishimura 1998],13 with WELL1024a/WELL19937a, two generators
introduced by Panneton et al. [2006] as an improvement over the Mersenne Twister, and
with xorgens4096, a very recent 4096-bit generator introduced by Brent [2007] we men-
tioned in Section 7. All these generators are non-cryptographic and aim at fast, high-quality
generation. As usual, 100 tests are performed at 100 equispaced points of the state space.

We choose generators from the xorshift* family that perform well on both BigCrush
and Dieharder, have a good weight score and enough large parameters (which provide faster
state change spreading): more precisely, the xorshift64* generator A1(12, 25, 27) · M32

(Figure 10), xorshift1024* with parameters 31, 11, 30 and multiplier M8 (Figure 11), and
xorshift4096* with parameters 25, 3, 49 and multiplier M2.

9.1. Quality

Table X compares the BigCrush scores of the generators we discussed. The results are
quite interesting. A simple 64-bit xorshift* generator has less linear artifacts than
MT19937, WELL1024a or WELL19937a and, thus, a significantly better score. High-dimension
xorgens4096 and xorshift* generators perform significantly better, in spite of being ex-
tremely simple, and have no systematic failure. The 64-bit xorshift* generator suggested
by “Numerical Recipes” fails systematically the BirthdaySpacings test, contrarily the one
we have selected.14 We do not report the results of Dieharder, as at this level of quality the
suite is unable to make any significant distinction among the generators.

9.2. Escaping zeroland

We show in Figure 9 the speed at which a few of the generators of Table X “escape from
zeroland” [Panneton et al. 2006]: purely linearly recurrent generators with a very large state
space need a very long time to get from an initial state with a small number of ones to a state
in which the ones are approximately half. The figure shows a measure of escape time given
by the ratio of ones in a window of 4 consecutive 64-bit values sliding over the first 100 000
generated values, averaged over all possible seeds with exactly one bit set (see [Panneton
et al. 2006] for a detailed description).

As it is known, MT19937 needs hundreds of thousands of iterations to start behaving cor-
rectly. xorshift4096* and xorgens4096 need a few thousand (but xorgens4096 oscillates

12Brent’s ranut generator [Brent 1992] contains one of the first applications of this technique.
13More precisely, with its 64-bit version.
14Note that we report the number of failed tests on our 100 seeds. L’Ecuyer and Simard [L’Ecuyer and
Simard 2007] report the number of types of failed tests (e.g., failing two distinct RandomWalk tests counts
as one) on a single run, so some care must be taken when comparing the results we report and those reported
by them.

An experimental exploration of Marsaglia’s xorshift generators, scrambled 19

Table X. A comparison of generators using BigCrush.

Algorithm
Failures

W/n Systematic
S R +

A1(12, 25, 27) ·M32 230 133 363 0.48 MatrixRank

A3(4, 35, 21) ·M32 240 223 463 0.38 MatrixRank, BirthdaySpacings

xorshift1024* 33 32 65 0.35 —

xorshift4096* 33 34 67 0.11 —

xorgens4096 42 40 82 0.23 —

MT19937 258 258 516 0.34 LinearComp

WELL1024a 441 441 882 0.40 MatrixRank, LinearComp

WELL19937a 235 233 468 0.43 LinearComp

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100 1000 10000 100000

A
v
er

ag
e

n
u

m
b

er
 o

f
o
n
es

Samples

xorgens4096
MT19937

WELL1024a
WELL19937a

xorshift64*
xorshift1024*
xorshift4096*

Fig. 9. Convergence to “half of the bits are ones in average” plot.

always around 1/2), WELL19937a and xorshift1024* a few hundreds, whereas WELL1024a
just a few dozens, and xorshift64* is almost unaffected.

Table XI condenses Figure 9 into the mean and standard deviation of the displayed values.
Clearly, the multiplication step helps in reducing the correlation between the number of ones
in the state and the number of ones in the output values. Also, the slowness in recovering
from states with too many zeroes it directly correlated to the size of the state space—a very
good argument against linear generators with too large state spaces.

9.3. Speed

Finally, we benchmark the generators of Table X. Our tests were run on an Intel R© CoreTM

i7-4770 CPU @3.40GHz (Haswell), and the results are shown in Table XII (variance is
undetectable, as we generate 1010 values in each test). We also report as a strong baseline
results about SFMT19937, the SIMD-Oriented Fast Mersenne Twister [Saito and Matsumoto
2008], a 128-bit version of the Mersenne Twister based on the SSE2 extended instruction
set of Intel processors (and thus not usable, in principle, on other processors). We used
suitable options to keep the compiler from unrolling loops or extracting loop invariants.

20 S. Vigna

Table XI. Mean and standard deviation for the data
shown in Figure 9.

Algorithm Mean Standard deviation

xorshift64* 0.5000 0.0039

xorgens4096 0.5000 0.0031

xorshift1024* 0.5000 0.0035

WELL1024a 0.4999 0.0036

xorshift4096* 0.4992 0.0110

WELL19937a 0.4983 0.0185

MT19937 0.2823 0.1705

Table XII. Time to emit a 64-bit integer on an Intel R©
CoreTM i7-4770 CPU @3.40GHz (Haswell).

Algorithm Speed (ns/64 bits)

xorshift64* 1.58

xorshift1024* 1.36

xorshift4096* 1.36

xorgens4096 2.06

MT19937 (64-bit version) 2.84

SFMT19937 1.80

WELL1024a 10.31

WELL19937a 7.45

The highest speed is achieved by the high-dimensional xorshift* generators. SFMT19937
is a major improvement in speed over MT19937, albeit slightly slower than a high-dimensional
xorshift* generator; it fails systematically, moreover, the same tests of MT19937.

A xorshift64* generator is actually slower than its high-dimensional counterparts. This
is not surprising, as the three shift/xors in a xorshift64* generator form a dependency
chain and must be executed in sequence, whereas two of the shifts of a higher-dimension
generator are independent and can be internally parallelized by the CPU. WELL1024a and
WELL19937a are heavily penalized by their 32-bit structure.

#include <stdint.h>

uint64_t x;

uint64_t next(void) {
x ^= x >> 12; // a
x ^= x << 25; // b
x ^= x >> 27; // c
return x * UINT64_C(2685821657736338717);

}

Fig. 10. The suggested xorshift64* generator in C99 code. The variable x should be initialized to a nonzero
seed before calling next().

10. CONCLUSIONS

After our careful experimental analysis, we reach the following conclusions:

A xorshift1024* generator is an excellent choice for a general-purpose, high-
speed generator. The statistical quality of the generator is very high (it has, actually,

An experimental exploration of Marsaglia’s xorshift generators, scrambled 21

#include <stdint.h>

uint64_t s[16];
int p;

uint64_t next(void) {
const uint64_t s0 = s[p];
uint64_t s1 = s[p = (p + 1) & 15];
s1 ^= s1 << 31; // a
s[p] = s1 ^ s0 ^ (s1 >> 11) ^ (s0 >> 30); // b,c
return s[p] * UINT64_C(1181783497276652981);

}

Fig. 11. The suggested xorshift1024* generator in C99 code. The array s should be initialized to a nonzero
seed before calling next().

#include <stdint.h>
#include <string.h>

void jump(void) {
static const uint64_t JUMP[] = {

0x84242f96eca9c41d, 0xa3c65b8776f96855, 0x5b34a39f070b5837,
0x4489affce4f31a1e, 0x2ffeeb0a48316f40, 0xdc2d9891fe68c022,
0x3659132bb12fea70, 0xaac17d8efa43cab8, 0xc4cb815590989b13,
0x5ee975283d71c93b, 0x691548c86c1bd540, 0x7910c41d10a1e6a5,
0x0b5fc64563b3e2a8, 0x047f7684e9fc949d, 0xb99181f2d8f685ca,
0x284600e3f30e38c3

};

uint64_t t[16] = { 0 };
for(int i = 0; i < sizeof JUMP / sizeof *JUMP; i++)

for(int b = 0; b < 64; b++) {
if (JUMP[i] & 1ULL << b)

for(int j = 0; j < 16; j++)
t[j] ^= s[(j + p) & 15];

next();
}

for(int j = 0; j < 16; j++)
s[(j + p) & 15] = t[j];

}

Fig. 12. The jump function for the xorshift1024* generator of Figure 11 in C99 code. It is equivalent to
2512 calls to next().

the best results in BigCrush), and its period is so large that the probability of overlap-
ping sequences is practically zero, even in the largest parallel simulation (and strictly non-
overlapping sequences can be easily generated using the jump function). Nonetheless, the
state space is reasonably small, so that seeding it with high-quality bits is not too expensive,
and recovery from states with a large number of zeroes happens quickly. The generator is
also blazingly fast (it is actually the fastest generator we tested). The reasonable state space
makes it also easier, in case a large number of generators is used at the same time, to fit
their state into the cache. In any case, with respect to other generators, the state is accessed

22 S. Vigna

in a more localized way, as read and write operations happen at two consecutive locations,
and thus will generate at most one cache miss.

In case memory is an issue, or array access is expensive, a very good general-
purpose generator is a xorshift64* generator. While the generator A1(12, 25, 27)·M32

fails systematically the MatrixRank test, it has less linear artifacts than MT19937, WELL1024a
or WELL19937a, which fail systematically even more tests. It is a very good choice if memory
footprint is an issue and a very large number of generators is necessary. It can also be used,
for instance, to generate the initial state of another generator with a larger state space using
a 64-bit seed. We remark that a xorshift64* generator can also actually be faster than a
xorshift1024* generator if the underlying language incurs significant costs when accessing
an array: for instance, in Java a xorshift64* generator emits a value in 1.62 ns, whereas a
xorshift1024* generator needs 2.06 ns.

Linear generators with an excessively long period have a number of problems
that are not compensated by higher statistical quality. WELL19937a is almost four
slower than xorshift1024*, and has a worse performance in BigCrush; moreover, recovery
from states with many zeroes, albeit enormously improved with respect to MT19937, is still
very slow, and seeding properly the generator requires almost twenty thousands random
bits. In the end, it is in general difficult to motivate state spaces larger than 21024. Similar
considerations are made by Press et al. [2007] and L’Ecuyer and Panneton [2005].

Surprisingly simple and fast generators can produce sequences that pass strong
statistical tests. The code in Figure 11 is extremely shorter and simpler than that of
MT19937, WELL1024a or WELL19937a. Yet, it performs significantly better on BigCrush. It is
a tribute to Marsaglia’s cleverness that just eight logical operations, one addition and one
multiplication by a constant can produce sequences of such high quality. xorgens generators
are similar with this respect, but use several more operations due to the additional shift
and to combination with a Weyl generator to hide linear artifacts [Brent 2007].

The t for which the multiplier has a good figure of merit has no detectable
effect on the quality of the generator. If our tests, we could not find any significant
difference between the behavior of generators based on M32, M8 or M2. It could be inter-
esting to experiment with multipliers having very bad figures of merit, or more generally
with multipliers chosen using different heuristics.

Equidistribution is more useful as a design feature than as an evaluation feature.
While designing generators around equidistribution might be a good idea, as it leads in
general to good generators, evaluation by equidistribution is a more delicate matter because
of high-bits bias, instability issues, and failure to detect the generators having the best scores
in statistical suites.

TestU01 has significantly more resolution than Dieharder as a test suite. In
particular in the high-dimension case, TestU01 is able to provide useful information, whereas
Dieharder scores flatten down. However, TestU01 (as any other test suite with high-bits bias)
must always be applied to the reverse generator, too.

REFERENCES

Richard P. Brent. 1992. Uniform Random Number Generators for Supercomputers. In Supercomputing, the
competitive advantage: proceedings of the Fifth Australian Supercomputing Conference. 5ASC Organ-
ising Committee, Melbourne, 95–104.

Richard P. Brent. 2004. Note on Marsaglia’s Xorshift Random Number Generators. Journal of Statistical
Software 11, 5 (2004), 1–5.

Richard P. Brent. 2007. Some long-period random number generators using shifts and xors. ANZIAM J. 48
(2007), C188–C202.

Richard P. Brent. 2010. The myth of equidistribution for high-dimensional simulation. CoRR abs/1005.1320
(2010).

An experimental exploration of Marsaglia’s xorshift generators, scrambled 23

Robert G. Brown. 2013. Dieharder: A Random Number Test Suite (Version 3.31). (2013). Retrieved January
8, 2014 from http://www.phy.duke.edu/∼rgb/General/dieharder.php

Aaldert Compagner. 1991. The hierarchy of correlations in random binary sequences. Journal of Statistical
Physics 63, 5-6 (1991), 883–896.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. 1994. Concrete Mathematics (second ed.).
Addison–Wesley.

Shin Harase. 2011. An efficient lattice reduction method for F2-linear pseudorandom number generators
using Mulders and Storjohann algorithm. J. Comput. Appl. Math. 236, 2 (2011), 141–149.

Maurice G. Kendall. 1938. A New Measure of Rank Correlation. Biometrika 30, 1/2 (1938), 81–93.

Maurice G. Kendall. 1945. The treatment of ties in ranking problems. Biometrika 33, 3 (1945), 239–251.

Pierre L’Ecuyer. 1999. Tables of linear congruential generators of different sizes and good lattice structure.
Math. Comput 68, 225 (1999), 249–260.

Pierre L’Ecuyer and Jacinthe Granger-Piché. 2003. Combined generators with components from different
families. Mathematics and Computers in Simulation 62, 3 (2003), 395–404.

Pierre L’Ecuyer and François Panneton. 2005. Fast random number generators based on linear recurrences
modulo 2: overview and comparison. In Proceedings of the 37th Winter Simulation Conference. Winter
Simulation Conference, 110–119.

Pierre L’Ecuyer and Richard Simard. 2007. TestU01: A C library for empirical testing of random number
generators. ACM Trans. Math. Softw. 33, 4, Article 22 (2007).

Robert H. Lewis. 2018. Fermat: A Computer Algebra System for Polynomial and Matrix Computation.
(2018). http://home.bway.net/lewis/

Rudolf Lidl and Harald Niederreiter. 1994. Introduction to finite fields and their applications. Cambridge
University Press, Cambridge.

George Marsaglia. 2003. Xorshift RNGs. Journal of Statistical Software 8, 14 (2003), 1–6.

Makoto Matsumoto and Takuji Nishimura. 1998. Mersenne Twister: A 623-Dimensionally Equidistributed
Uniform Pseudo-Random Number Generator. ACM Trans. Model. Comput. Simul. 8, 1 (1998), 3–30.

Harald Niederreiter. 1992. Random number generation and quasi-Monte Carlo methods. CBMS-NSF re-
gional conference series in Appl. Math., Vol. 63. SIAM.

François Panneton. 2004. Construction d’ensembles de points basé sur une récurrence linéaire dans un
corps fini de caractéristique 2 pour la simulation Monte Carlo et l’intégration quasi-Monte Carlo.
Ph.D. Dissertation. Université de Montréal.

François Panneton and Pierre L’Ecuyer. 2005. On the xorshift random number generators. ACM Trans.
Model. Comput. Simul 15, 4 (2005), 346–361.

François Panneton, Pierre L’Ecuyer, and Makoto Matsumoto. 2006. Improved long-period generators based
on linear recurrences modulo 2. ACM Trans. Math. Softw. 32, 1 (2006), 1–16.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 2007. Numerical recipes:
the art of scientific computing. Cambridge University Press.

Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh, Mark Levenson,
Mark Vangel, David Banks, Alan Heckert, James Dray, and San Vo. 2001. A Statistical Test Suite For
Random and Pseudorandom Number Generators for Cryptographic Applications. National Institute for
Standards and Technology, pub-NIST:adr. NIST Special Publication 800-22, with revisions dated May
15, 2001.

Mutsuo Saito. 2013. MTToolBox (Version 0.2). (2013). Retrieved January 8, 2014 from http://msaito.
github.io/MTToolBox/en/

Mutsuo Saito and Makoto Matsumoto. 2008. SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseudo-
random Number Generator. In Monte Carlo and Quasi-Monte Carlo Methods 2006, Alexander Keller,
Stefan Heinrich, and Harald Niederreiter (Eds.). Springer, 607–622.

Mutsuo Saito and Makoto Matsumoto. 2014. XSadd (Version 1.1). (25 March 2014). http://www.math.sci.
hiroshima-u.ac.jp/∼m-mat/MT/XSADD/

Sebastiano Vigna. 2016. An experimental exploration of Marsaglia’s xorshift generators, scrambled. ACM
Trans. Math. Software 42, 4 (2016). Article No. 30.

