
METAGRAPH: drawing (un)directed graphs with METAPOST

METAGRAPH is a very small set of macros that complement somehow the well-known boxes package.
The basic idea is providing low-impact definitions that produce automatically (labelled) nodes/vertices
and (labelled) edges/arcs that connect correctly boxed items. Moreover, circular boxes with fixed radius
are made available to produce more aesthetically pleasant graphs.

Since METAPOST already provides a very rich syntax to specify paths, and there are already clearly
named commands such as draw, drawarrow and drawdblarrow to draw undirected, directed and bidi-
rectional arcs, the macros simply produce the correct path between two nodes. In a sense, all the macros
do is to let you forget about manipulating suffixes related to boxes; for instance, you do not have to
remember that bpath.x is the bounding path of node x and that you have to cut suitably a path so
that it starts and ends at the node border. Moreover, the macros try to be smart when placing a label
(doing so, they are doomed to appear dumb, but such is life).

Nodes. I assume a minimal knowledge of boxes (see the METAPOST manual). You must first create
your node, which can be an arbitrary box or one created with the node macro, which has the same
syntax of boxit and circleit: for instance, node.x creates a node named x with no label, whereas
node.x(btex 0 etex) creates a node with a label. The important difference is that the value of the
variable noderadius at creation time will decide the radius of each node, making it possible to build
graphs with nodes of uniform size. (You can change noderadius whenever you like: nodes do remember
the radius with which they were created.)

Now you must write equations positioning the various nodes (no assignments, please!). Once that is
done, just call drawboxed or drawunboxed as usual.

Arcs. Now comes the fun part. There are macros that make drawing arcs very easy. First of all, arc
takes three arguments: a box (node) name, some text representing a path join and another box name.
It returns the correct path between the two boxes using the given path join. Thus,

arc(x)(--)(y)

will return a simple arc between node (or box) x and node (or box) y. Note that you must be careful
in separating correctly the macro arguments: the middle part is text, so arc(x,--,y) is bad syntax,
whereas arc(x,--)(y) is acceptable but discouraged.

You can draw an arc like any other path: for instance, the program

noderadius := 3;

node.x; node.y;

y.c = x.c + (2cm,0);

drawboxed(x, y);

drawarrow arc(x)(--)(y);

generates the graph

You’ve got the idea: since it’s just a path, you can assign it, modify it, and so on. Indeed, since the in
between text is any path join, you can play even more, altering, for instance, the initial direction of the
arc:

draw arc(x)({up}..)(y);

Loops. Loops cannot be easily drawn using arc. This is why there is a loop macro that takes as
arguments a box and a direction, and creates a loop in that direction: thus,

noderadius := 7;

node.x;

drawboxed(x);

drawdblarrow loop(x, up) dashed evenly;

drawdblarrow loop(x, down);

1

produces

If you need loops that are more or less tight, you can change the global parameter loopcurl, initally
set to 1.5. The following example shows loops with loopcurl set to 0.3:

Labels. Labelling arcs is very easy: larc and lloop require an additional argument (a label), and
possibly a suffix after the command name (exactly like label) if you want to position the label manually.
Most of the times the macros are smart enough to put the label where it should go, but you can override
their choice with the usual suffixes top, bot, lft, rt, ulft, urt, llft, and lrt. The following example
uses more or less all features:

noderadius := 7; node.x0("0");

noderadius := 10; node.x1("1");

x1c = x0c + (2cm,0);

drawboxed(x0, x1);

drawarrow larc(x0)(--)(x1)(btex a etex);

drawarrow larc.bot(x0)({down}..)(x1)(btex b etex);

drawarrow lloop(x0, left, btex δ etex);

drawarrow lloop(x1, right, btex $\sqrt2$ etex) dashed evenly;

drawarrow lloop.llft(x1, 2right, btex γ etex) dashed evenly;

The resulting graph is:

0 1
a

b

δ
√
2

γ

Manual stuff. There will always be occasions in which you must do something manually. Since
METAGRAPH is just an extension for boxes, you can use nodes as you would do for standard boxes.
Additionally, a macro cutarc helps in cutting arcs at the bounding path of their source/target. For
instance, in this example we want four arcs to really get out at the north/south/est/west points:

noderadius := 8;

node.x; node.y;

drawboxed(x, y);

drawarrow x.n{up}..y.c cutarc(x,y);

drawarrow x.s{down}..y.c cutarc(x,y);

drawarrow x.e{right}..y.c cutarc(x,y);

The result is slightly different than the one obtained by just changing the initial direction, which is
shown on the right side:

2

3

