
In-core computation of
distance distributions and
geometric centralities with

HyperBall: A hundred
billion nodes and beyond

Paolo Boldi, Sebastiano Vigna
Laboratory for Web Algorithmics

Università degli Studi di Milano, Italy

Setup

Setup
✦ You have a very large graph (social, web)

Setup
✦ You have a very large graph (social, web)

✦ You want to understand something of its
global structure (not triangles/degree
distribution/etc.)

Setup
✦ You have a very large graph (social, web)

✦ You want to understand something of its
global structure (not triangles/degree
distribution/etc.)

✦ First candidate: distance distribution (and, in
the directed case, the number of reachable
pairs)

Setup
✦ You have a very large graph (social, web)

✦ You want to understand something of its
global structure (not triangles/degree
distribution/etc.)

✦ First candidate: distance distribution (and, in
the directed case, the number of reachable
pairs)

✦ You want to understand which nodes are
important in some sense

For real

For real
✦ First paper at WWW 2011 (with Marco

Rosa)

For real
✦ First paper at WWW 2011 (with Marco

Rosa)

✦ Open-source software part of the
WebGraph framework

For real
✦ First paper at WWW 2011 (with Marco

Rosa)

✦ Open-source software part of the
WebGraph framework

✦ Run on Facebook (whole graph) using just

For real
✦ First paper at WWW 2011 (with Marco

Rosa)

✦ Open-source software part of the
WebGraph framework

✦ Run on Facebook (whole graph) using just

Geometric Centralities

Geometric Centralities

✦ Closeness (Bavelas 1946):

Geometric Centralities

✦ Closeness (Bavelas 1946):
1P

y d.y; x/

Geometric Centralities

✦ Closeness (Bavelas 1946):

✦ The summation is over all y such that
d(y,x)<∞

1P
y d.y; x/

Geometric Centralities

✦ Closeness (Bavelas 1946):

✦ The summation is over all y such that
d(y,x)<∞

✦ Harmonic centrality:

1P
y d.y; x/

Geometric Centralities

✦ Closeness (Bavelas 1946):

✦ The summation is over all y such that
d(y,x)<∞

✦ Harmonic centrality:

1P
y d.y; x/

X
y¤x

1

d.y; x/

Why?

Why?
✦ Using HyperBall, we were able to evaluate

geometric centrality in an IR setting

Why?
✦ Using HyperBall, we were able to evaluate

geometric centrality in an IR setting

✦ The (preliminary) results show that
harmonic centrality has a very good signal
(in fact, better NDCG@10/P@10 than
anything we tried)

Why?
✦ Using HyperBall, we were able to evaluate

geometric centrality in an IR setting

✦ The (preliminary) results show that
harmonic centrality has a very good signal
(in fact, better NDCG@10/P@10 than
anything we tried)

✦ In general, HyperBall makes it possible to
use harmonic centrality on very large graphs

Hollywood: PageRank
Ron Jeremy Adolf Hitler Lloyd Kaufman George W. Bush

Ronald Reagan Bill Clinton Martin Sheen Debbie Rochon

Hollywood: PageRank
Ron Jeremy Adolf Hitler Lloyd Kaufman George W. Bush

Ronald Reagan Bill Clinton Martin Sheen Debbie Rochon

Hollywood: Harmonic
George Clooney Samuel Jackson Sharon Stone Tom Hanks

Martin Sheen Dennis Hopper Antonio Banderas Madonna

Intermediate step

Intermediate step
✦ For each node, we compute in sequence the

number of nodes at distance exactly t

Intermediate step
✦ For each node, we compute in sequence the

number of nodes at distance exactly t

✦ Adding up over all nodes, we get the
distance distribution (modulo
normalization)

Intermediate step
✦ For each node, we compute in sequence the

number of nodes at distance exactly t

✦ Adding up over all nodes, we get the
distance distribution (modulo
normalization)

✦ Centralities can be rewritten, e.g., harmonic:

Intermediate step
✦ For each node, we compute in sequence the

number of nodes at distance exactly t

✦ Adding up over all nodes, we get the
distance distribution (modulo
normalization)

✦ Centralities can be rewritten, e.g., harmonic:
X
t>0

1

t

ˇ̌
fy j d.y; x/ D tg

ˇ̌

How do you compute it?

How do you compute it?
✦ Many many breadth-first visits: O(mn),

needs direct access

How do you compute it?
✦ Many many breadth-first visits: O(mn),

needs direct access

✦ Sampling: a fraction of breadth-first visits,
very unreliable results on graphs that are
not strongly connected, needs direct access

How do you compute it?
✦ Many many breadth-first visits: O(mn),

needs direct access

✦ Sampling: a fraction of breadth-first visits,
very unreliable results on graphs that are
not strongly connected, needs direct access

✦ Edith Cohen’s [JCSS 1997] size estimation
framework: very powerful but does not
scale or parallelize really well, needs direct

Alternative: Diffusion

Alternative: Diffusion
✦ Basic idea: Palmer et. al, KDD ’02

Alternative: Diffusion
✦ Basic idea: Palmer et. al, KDD ’02

✦ Let Bt(x) be the ball of radius t around x
(nodes at distance at most t from x)

Alternative: Diffusion
✦ Basic idea: Palmer et. al, KDD ’02

✦ Let Bt(x) be the ball of radius t around x
(nodes at distance at most t from x)

✦ Clearly B0(x)={x}

Alternative: Diffusion
✦ Basic idea: Palmer et. al, KDD ’02

✦ Let Bt(x) be the ball of radius t around x
(nodes at distance at most t from x)

✦ Clearly B0(x)={x}

✦ But also Bt+1(x)=∪x→yBt(y)∪{x}

Alternative: Diffusion
✦ Basic idea: Palmer et. al, KDD ’02

✦ Let Bt(x) be the ball of radius t around x
(nodes at distance at most t from x)

✦ Clearly B0(x)={x}

✦ But also Bt+1(x)=∪x→yBt(y)∪{x}

✦ So we can compute balls by enumerating
the arcs x→y and performing set unions

A round of updates
☺

☺

☺

☺

☺

☺

☺

☺

☺

☺

☺

☺

☺☺

☺

☺

☺

☺

☺☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺

☺

☺

☺

☺

☺

☺☺

☺

☺

☺

☺

☺☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺

☺

☺

☺

☺

☺☺

☺

☺

☺

☺

☺☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺

☺

☺

☺

☺☺

☺

☺

☺

☺

☺☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺
☺

☺

☺

☺☺

☺

☺

☺

☺

☺☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺
☺ ☺

☺

☺☺

☺

☺

☺

☺

☺☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺
☺ ☺
☺

☺☺

☺

☺

☺

☺

☺☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺
☺ ☺
☺☺

☺

☺

☺

☺

☺

☺☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺
☺ ☺
☺☺

☺

☺

☺

☺

☺

☺☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺
☺ ☺
☺☺

☺☺

☺

☺

☺

☺☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺
☺ ☺
☺☺

☺☺ ☺

☺

☺

☺☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺
☺ ☺
☺☺

☺☺ ☺

☺

☺

☺☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺
☺ ☺
☺☺

☺☺ ☺

☺☺

☺☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺
☺ ☺
☺☺

☺☺ ☺

☺☺ ☺

☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺
☺ ☺
☺☺

☺☺ ☺

☺☺ ☺

☺

☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺
☺ ☺
☺☺

☺☺ ☺

☺☺ ☺

☺☺

☺

A round of updates
☺

☺

☺

☺

☺

☺

☺☺ ☺
☺ ☺
☺☺

☺☺ ☺

☺☺ ☺

☺☺ ☺

Another round...

☺☺

☺☺ ☺

☺☺ ☺

☺ ☺

☺☺ ☺

☺☺☺

☺☺ ☺

☺ ☺

☺☺☺

☺ ☺

☺☺ ☺

☺☺

☺☺☺

Another round...

☺☺

☺☺ ☺

☺☺ ☺

☺ ☺

☺☺ ☺

☺☺☺

☺☺ ☺

☺ ☺

☺☺☺

☺ ☺

☺☺ ☺

☺☺

☺☺☺

Another round...

☺☺

☺☺ ☺

☺☺ ☺

☺ ☺

☺☺ ☺

☺☺☺

☺☺ ☺☺ ☺

☺☺☺

☺ ☺

☺☺ ☺

☺☺

☺☺☺

Another round...

☺☺

☺☺ ☺

☺☺ ☺

☺ ☺

☺☺ ☺

☺☺☺

☺☺ ☺☺ ☺☺☺☺

☺ ☺

☺☺ ☺

☺☺

☺☺☺

Another round...

☺☺

☺☺ ☺

☺☺ ☺

☺ ☺

☺☺ ☺

☺☺☺

☺☺ ☺☺ ☺☺☺☺

☺ ☺

☺☺ ☺

☺☺

☺☺☺

Another round...

☺☺

☺☺ ☺

☺☺ ☺

☺ ☺

☺☺ ☺

☺☺☺

☺☺ ☺☺ ☺☺☺☺

☺ ☺☺☺ ☺

☺☺

☺☺☺

Another round...

☺☺

☺☺ ☺

☺☺ ☺

☺ ☺

☺☺ ☺

☺☺☺

☺☺ ☺☺ ☺☺☺☺

☺ ☺☺☺ ☺

☺☺

☺☺☺

Another round...

☺☺

☺☺ ☺

☺☺ ☺

☺ ☺

☺☺ ☺

☺☺☺

☺☺ ☺☺ ☺☺☺☺

☺ ☺☺☺ ☺

☺☺☺☺☺

Easy but expensive

Easy but expensive
✦ Each set uses linear space; overall quadratic

Easy but expensive
✦ Each set uses linear space; overall quadratic

✦ Impossible!

Easy but expensive
✦ Each set uses linear space; overall quadratic

✦ Impossible!

✦ But what if we use approximate sets?

Easy but expensive
✦ Each set uses linear space; overall quadratic

✦ Impossible!

✦ But what if we use approximate sets?

✦ Idea: use probabilistic counters, which
represent sets but answer just to “size?”
questions

Easy but expensive
✦ Each set uses linear space; overall quadratic

✦ Impossible!

✦ But what if we use approximate sets?

✦ Idea: use probabilistic counters, which
represent sets but answer just to “size?”
questions

✦ Very small!

Main trick

Main trick
✦ Choose an approximate set such that unions

can be computed quickly

Main trick
✦ Choose an approximate set such that unions

can be computed quickly

✦ ANF [Palmer et al., KDD ’02] uses Martin–
Flajolet (MF) counters (log n + c space)

Main trick
✦ Choose an approximate set such that unions

can be computed quickly

✦ ANF [Palmer et al., KDD ’02] uses Martin–
Flajolet (MF) counters (log n + c space)

✦ We use HyperLogLog counters [Flajolet et
al.,2007] (log log n space)

Main trick
✦ Choose an approximate set such that unions

can be computed quickly

✦ ANF [Palmer et al., KDD ’02] uses Martin–
Flajolet (MF) counters (log n + c space)

✦ We use HyperLogLog counters [Flajolet et
al.,2007] (log log n space)

✦ MF counters can be combined with an OR

Main trick
✦ Choose an approximate set such that unions

can be computed quickly

✦ ANF [Palmer et al., KDD ’02] uses Martin–
Flajolet (MF) counters (log n + c space)

✦ We use HyperLogLog counters [Flajolet et
al.,2007] (log log n space)

✦ MF counters can be combined with an OR

✦ We use broadword programming to combine
HyperLogLog counters quickly!

HyperLogLog counters

HyperLogLog counters
✦ Instead of actually counting, we observe a

statistical feature of a set (think stream) of
elements

HyperLogLog counters
✦ Instead of actually counting, we observe a

statistical feature of a set (think stream) of
elements

✦ The feature: the number of trailing zeroes of
the value of a very good hash function

HyperLogLog counters
✦ Instead of actually counting, we observe a

statistical feature of a set (think stream) of
elements

✦ The feature: the number of trailing zeroes of
the value of a very good hash function

✦ We keep track of the maximum m (log log n
bits!)

HyperLogLog counters
✦ Instead of actually counting, we observe a

statistical feature of a set (think stream) of
elements

✦ The feature: the number of trailing zeroes of
the value of a very good hash function

✦ We keep track of the maximum m (log log n
bits!)

✦ The number of distinct elements ∝ 2m

HyperLogLog counters
✦ Instead of actually counting, we observe a

statistical feature of a set (think stream) of
elements

✦ The feature: the number of trailing zeroes of
the value of a very good hash function

✦ We keep track of the maximum m (log log n
bits!)

✦ The number of distinct elements ∝ 2m

✦ Important: the counter of stream AB is simply

Many, many counters...

Many, many counters...
✦ To increase confidence, we need several

counters (usually 2b, b≥4) and take their
harmonic mean

Many, many counters...
✦ To increase confidence, we need several

counters (usually 2b, b≥4) and take their
harmonic mean

✦ Thus each set is represented by a list of small
(typically 5-bit) counters (unlikely >6 bits!)

Many, many counters...
✦ To increase confidence, we need several

counters (usually 2b, b≥4) and take their
harmonic mean

✦ Thus each set is represented by a list of small
(typically 5-bit) counters (unlikely >6 bits!)

✦ To compute the union of two sets these must be
maximized one-by-one

Many, many counters...
✦ To increase confidence, we need several

counters (usually 2b, b≥4) and take their
harmonic mean

✦ Thus each set is represented by a list of small
(typically 5-bit) counters (unlikely >6 bits!)

✦ To compute the union of two sets these must be
maximized one-by-one

✦ Extracting by shifts, maximizing and putting
back by shifts is unbearably slow

Many, many counters...
✦ To increase confidence, we need several

counters (usually 2b, b≥4) and take their
harmonic mean

✦ Thus each set is represented by a list of small
(typically 5-bit) counters (unlikely >6 bits!)

✦ To compute the union of two sets these must be
maximized one-by-one

✦ Extracting by shifts, maximizing and putting
back by shifts is unbearably slow

Broadword!
7 0 2 1

35 2 5

8 bits

Broadword!
7 0 2 1

35 2 5

1 1 1 1

0 0 0 0

8 bits

Broadword!
7 0 2 1

35 2 5

1 1 1 1

0 0 0 0

8 bits

-

=

Broadword!
7 0 2 1

35 2 5

1 1 1 1

0 0 0 0

8 bits

2 125 0 124

-

=

Broadword!
7 0 2 1

35 2 5

1 1 1 1

0 0 0 0

8 bits

2 125 0 1241 0 1 0

-

=

Broadword!
7 0 2 1

35 2 5

1 1 1 1

0 0 0 0

8 bits

2 125 0 1241 0 1 0

1 1 1 1

-

=

Broadword!
7 0 2 1

35 2 5

1 1 1 1

0 0 0 0

8 bits

2 125 0 124

1 0 1 01 1 1 1

-

=

Broadword!
7 0 2 1

35 2 5

1 1 1 1

0 0 0 0

8 bits

2 125 0 124

1 0 1 01 1 1 1

1 1 1 10 0 0 0

-

=

Broadword!
7 0 2 1

35 2 5

1 1 1 1

0 0 0 0

8 bits

2 125 0 124

1 0 1 01 1 1 1

1 1 1 10 0 0 0

-

=

-

=

Broadword!
7 0 2 1

35 2 5

1 1 1 1

0 0 0 0

8 bits

2 125 0 124

1 0 1 01 1 1 1

1 1 1 10 0 0 0

0 127 0 1271 0 1 0

-

=

-

=

Broadword!
7 0 2 1

35 2 5

1 1 1 1

0 0 0 0

8 bits

2 125 0 124

1 0 1 01 1 1 1

1 1 1 10 0 0 0

0 127 0 1271 0 1 0

-

=

-

=

Broadword!
7 0 2 1

35 2 5

1 1 1 1

0 0 0 0

8 bits

2 125 0 124

1 0 1 01 1 1 1

1 1 1 10 0 0 0

0 127 0 1271 0 1 0

-

=

-

=

Broadword!
7 0 2 1

35 2 5

1 1 1 1

0 0 0 0

8 bits

2 125 0 124

1 0 1 01 1 1 1

1 1 1 10 0 0 0

0 127 0 1271 0 1 0

-

=

-

=

Broadword!
7 0 2 1

35 2 5

1 1 1 1

0 0 0 0

8 bits

2 125 0 124

1 0 1 01 1 1 1

1 1 1 10 0 0 0

0 127 0 1271 0 1 0

-

=

-

=

Other ideas

Other ideas
✦ We keep track of modifications: we do not

maximize with unmodified counters

Other ideas
✦ We keep track of modifications: we do not

maximize with unmodified counters

✦ Systolic computation: each modified set
signals back to predecessors that something
is going to happen (much fewer updates—
O(m log n) in expectation! [Cohen])

Other ideas
✦ We keep track of modifications: we do not

maximize with unmodified counters

✦ Systolic computation: each modified set
signals back to predecessors that something
is going to happen (much fewer updates—
O(m log n) in expectation! [Cohen])

✦ Multicore exploitation by decomposition: a
task is updating just a batch of counters
whose overall outdegree is predicted using
an Elias-Fano representation of the
cumulative outdegree distribution (almost

Footprint

Footprint

✦ Scalability: a minimum of 20 bytes per node

Footprint

✦ Scalability: a minimum of 20 bytes per node

✦ On a 2TiB machine, 100 billion nodes

Footprint

✦ Scalability: a minimum of 20 bytes per node

✦ On a 2TiB machine, 100 billion nodes

✦ Graph structure is accessed by memory-
mapping in a compressed form (WebGraph)

Footprint

✦ Scalability: a minimum of 20 bytes per node

✦ On a 2TiB machine, 100 billion nodes

✦ Graph structure is accessed by memory-
mapping in a compressed form (WebGraph)

✦ Pointer to the graph are store using quasi-
succinct lists (Elias-Fano representation)

Performance

Performance
✦ On a 177K nodes / 2B arcs graph, RSD

~14%:

Performance
✦ On a 177K nodes / 2B arcs graph, RSD

~14%:

✦ Hadoop: 2875s per iteration [Kang,
Papadimitriou, Sun and H. Tong, 2011]

Performance
✦ On a 177K nodes / 2B arcs graph, RSD

~14%:

✦ Hadoop: 2875s per iteration [Kang,
Papadimitriou, Sun and H. Tong, 2011]

✦ HyperBall on this laptop: 70s per iteration

Performance
✦ On a 177K nodes / 2B arcs graph, RSD

~14%:

✦ Hadoop: 2875s per iteration [Kang,
Papadimitriou, Sun and H. Tong, 2011]

✦ HyperBall on this laptop: 70s per iteration

✦ On a 32-core workstation: 23s per iteration

Performance
✦ On a 177K nodes / 2B arcs graph, RSD

~14%:

✦ Hadoop: 2875s per iteration [Kang,
Papadimitriou, Sun and H. Tong, 2011]

✦ HyperBall on this laptop: 70s per iteration

✦ On a 32-core workstation: 23s per iteration

✦ On ClueWeb09 (4.8G nodes, 8G arcs) on a
40-core workstation: 141m (avg. 40s per
iteration)

Convergence

5 15 25 35 45 55 65 75 85 95

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Harmonic centrality

runs

R
el

at
ive

 e
rro

r

To be fair

To be fair
✦ Cohen’s estimation framework provides error

bounds for the relative error of the probability
mass function (and centralities)

To be fair
✦ Cohen’s estimation framework provides error

bounds for the relative error of the probability
mass function (and centralities)

✦ ANF/HyperANF give only pointwise guarantees,
but provide error for the absolute error of the
probability mass function (and centralities)

To be fair
✦ Cohen’s estimation framework provides error

bounds for the relative error of the probability
mass function (and centralities)

✦ ANF/HyperANF give only pointwise guarantees,
but provide error for the absolute error of the
probability mass function (and centralities)

✦ Sampling provides only the latter and only for
strongly connected graphs

To be fair
✦ Cohen’s estimation framework provides error

bounds for the relative error of the probability
mass function (and centralities)

✦ ANF/HyperANF give only pointwise guarantees,
but provide error for the absolute error of the
probability mass function (and centralities)

✦ Sampling provides only the latter and only for
strongly connected graphs

✦ ...but we can retrofit Cohen’s estimators on
HyperANF, obtaining an extremely efficient
version of Cohen’s framework!

Future Work

Future Work
✦ Perfect and natural fit for distributed

computation (GraphLab, Pregel, etc.)

http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it

Future Work
✦ Perfect and natural fit for distributed

computation (GraphLab, Pregel, etc.)

✦ Apply the same computational framework to
other size estimators

http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it

Future Work
✦ Perfect and natural fit for distributed

computation (GraphLab, Pregel, etc.)

✦ Apply the same computational framework to
other size estimators

✦ Edith Cohen new HIP estimators for
HyperLogLog counters might work

http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it

Future Work
✦ Perfect and natural fit for distributed

computation (GraphLab, Pregel, etc.)

✦ Apply the same computational framework to
other size estimators

✦ Edith Cohen new HIP estimators for
HyperLogLog counters might work

✦ http://webgraph.di.unimi.it/ ➟
software

http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it

Future Work
✦ Perfect and natural fit for distributed

computation (GraphLab, Pregel, etc.)

✦ Apply the same computational framework to
other size estimators

✦ Edith Cohen new HIP estimators for
HyperLogLog counters might work

✦ http://webgraph.di.unimi.it/ ➟
software

✦ http://law.di.unimi.it/ ➟ datasets

http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it

