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Setup
✦ You have a very large graph (social, web)

✦ You want to understand something of its 
global structure (not triangles/degree 
distribution/etc.)

✦ First candidate: distance distribution (and, in 
the directed case, the number of reachable 
pairs)

✦ You want to understand which nodes are 
important in some sense
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✦ Closeness (Bavelas 1946):

✦ The summation is over all y such that 
d(y,x)<∞ 

✦ Harmonic centrality:

1P
y d.y; x/

X
y¤x

1

d.y; x/
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Why?
✦ Using HyperBall, we were able to evaluate 

geometric centrality in an IR setting

✦ The (preliminary) results show that 
harmonic centrality has a very good signal 
(in fact, better NDCG@10/P@10 than 
anything we tried)

✦ In general, HyperBall makes it possible to 
use harmonic centrality on very large graphs
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Hollywood: Harmonic
George Clooney Samuel Jackson Sharon Stone Tom Hanks

Martin Sheen Dennis Hopper Antonio Banderas Madonna
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Intermediate step
✦ For each node, we compute in sequence the 

number of nodes at distance exactly t

✦ Adding up over all nodes, we get the 
distance distribution (modulo 
normalization)

✦ Centralities can be rewritten, e.g., harmonic:
X
t>0

1

t

ˇ̌
fy j d.y; x/ D tg

ˇ̌
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How do you compute it?
✦ Many many breadth-first visits: O(mn), 

needs direct access

✦ Sampling: a fraction of breadth-first visits, 
very unreliable results on graphs that are 
not strongly connected, needs direct access

✦ Edith Cohen’s [JCSS 1997] size estimation 
framework: very powerful but does not 
scale or parallelize really well, needs direct 
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Alternative: Diffusion
✦ Basic idea: Palmer et. al, KDD ’02

✦ Let Bt(x) be the ball of radius t around x 
(nodes at distance at most t from x)

✦ Clearly B0(x)={x}

✦ But also Bt+1(x)=∪x→yBt(y)∪{x}

✦ So we can compute balls by enumerating 
the arcs x→y and performing set unions
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Easy but expensive
✦ Each set uses linear space; overall quadratic

✦ Impossible!

✦ But what if we use approximate sets?

✦ Idea: use probabilistic counters, which 
represent sets but answer just to “size?” 
questions

✦ Very small!
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Main trick
✦ Choose an approximate set such that unions 

can be computed quickly

✦ ANF [Palmer et al., KDD ’02] uses Martin–
Flajolet (MF) counters (log n + c space)

✦ We use HyperLogLog counters [Flajolet et 
al.,2007] (log log n space)

✦ MF counters can be combined with an OR

✦ We use broadword programming to combine 
HyperLogLog counters quickly!
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HyperLogLog counters
✦ Instead of actually counting, we observe a 

statistical feature of a set (think stream) of 
elements

✦ The feature: the number of trailing zeroes of 
the value of a very good hash function

✦ We keep track of the maximum m (log log n 
bits!)

✦ The number of distinct elements ∝ 2m 

✦ Important: the counter of stream AB is simply 
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Other ideas
✦ We keep track of modifications: we do not 

maximize with unmodified counters

✦ Systolic computation: each modified set 
signals back to predecessors that something 
is going to happen (much fewer updates—
O(m log n) in expectation! [Cohen])

✦ Multicore exploitation by decomposition: a 
task is updating just a batch of counters 
whose overall outdegree is predicted using 
an Elias-Fano representation of the 
cumulative outdegree distribution (almost 
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Footprint

✦ Scalability: a minimum of 20 bytes per node

✦ On a 2TiB machine, 100 billion nodes

✦ Graph structure is accessed by memory-
mapping in a compressed form (WebGraph)

✦ Pointer to the graph are store using quasi-
succinct lists (Elias-Fano representation)
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Performance
✦ On a 177K nodes / 2B arcs graph, RSD 

~14%:

✦ Hadoop: 2875s per iteration [Kang, 
Papadimitriou, Sun and H. Tong, 2011]

✦ HyperBall on this laptop: 70s per iteration

✦ On a 32-core workstation: 23s per iteration

✦ On ClueWeb09 (4.8G nodes, 8G arcs) on a 
40-core workstation: 141m (avg. 40s per 
iteration)
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To be fair
✦ Cohen’s estimation framework provides error 

bounds for the relative error of the probability 
mass function (and centralities)

✦ ANF/HyperANF give only pointwise guarantees, 
but provide error for the absolute error of the 
probability mass function (and centralities)

✦ Sampling provides only the latter and only for 
strongly connected graphs

✦ ...but we can retrofit Cohen’s estimators on 
HyperANF, obtaining an extremely efficient 
version of Cohen’s framework!
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