In-core computation of
distance distributions and
geometric centralities with

HyperBall: A hundred
billion nodes and beyond

Paolo Boldi, Sebastiano Vigna
Laboratory for Web Algorithmics
Universitad degh Studi di Milano, Italy

Setup

Setup

You have a very large graph (social, web)

Setup

You have a very large graph (social, web)

You want to understand something of 1ts
global structure (not triangles/degree
distribution/etc.)

Setup

You have a very large graph (social, web)

You want to understand something of 1ts
global structure (not triangles/degree
distribution/etc.)

First candidate: dwtance dwstribution (and, in
the directed case, the number of reachable
patrd)

Setup

You have a very large graph (social, web)

You want to understand something of 1ts
global structure (not triangles/degree
distribution/etc.)

First candidate: dwtance dwstribution (and, in
the directed case, the number of reachable
patrd)

You want to understand which nodes are
tmportant 1n some sense

For real

For real

First paper at WWW 2011 (with Marco
Rosa)

For real

First paper at WWW 2011 (with Marco
Rosa)

Open-source software part of the
WebGraph framework

For real

First paper at WWW 2011 (with Marco
Rosa)

Open-source software part of the
WebGraph framework

Run on Facebook (whole graph) using just

For real

First paper at WWW 2011 (with Marco
Rosa)

Open-source software part of the
WebGraph framework

Run on Facebook (whole graph) using just

HOME PAGE | TODAY'S PAPER | VIDEO | MOST POPULAR | TIMES TOPICS |

Ehe New York Eimes Business Day
Technology

WORLD U.S. N.Y./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SF

Separating You and Me? 4.74 Degrees

By JOHN MARKOFF and SOMINI SENGUPTA
Published: November 21, 2011

The world is even smaller than you thought. RECOMMEND -
¥ TWITTER ‘

Geometric Centralities

Geometric Centralities

Closeness (Bavelas 1946):

Geometric Centralities

1
> Aty x)

Closeness (Bavelas 1946):

Geometric Centralities

1

Closeness (Bavelas 1946)

The summation 1s over all y chh 121}
d(y x) 20

Geometric Centralities

|
Closeness (Bavelas 1946)

The summation 1s over all y chh 121}
d(y x) 20

Harmonic centrality:

Geometric Centralities

1

Closeness (Bavelas 1946)

The summation 1s over all y Slf/Ch ﬁ}
d(y X)<®

Harmonic centrality: E
YFEX

1
d(y,x)

Why?

Why?

Using HyperBall, we were able to evaluate
geometric centrality in an IR setting

Why?

Using HyperBall, we were able to evaluate
geometric centrality in an IR setting

The (preliminary) results show that
harmonic centrality has a very good signal
(in fact, better NDCG@10/P@10 than
anything we tried)

Why?

Using HyperBall, we were able to evaluate
geometric centrality in an IR setting

The (preliminary) results show that
harmonic centrality has a very good signal

(in fact, better NDCG@10/P@10 than
anything we tried)

In general, HyperBall makes it possible to

use harmonic centrality on very large graphs

Hollywood: PageRank

Ron Jeremy Adolf Hitler Lloyd Kaufman George W. Bush

;.
A
§
]
I

Ronald Reagan Bill Clinton Martin Sheen Debbie Rochon

Hollywood: PageRank

Ron Jeremy Adolf Hitler Lloyd Kaufman

George W. Bush
iy 2N : ‘

Ronald Reagan Bill Clinton Martin Sheen Debbie Rochon

Hollywood: Harmonic

George Clooney Samuel Jackson Sharon Stone Tom Hanks

Martin Sheen Dennis Hopper Antonio Banderas Madonna

Intermediate step

Intermediate step

For each node, we compute in sequence the
number of nodes at distance exactly ¢

Intermediate step

For each node, we compute in sequence the
number of nodes at distance exactly ¢

Adding up over all nodes, we get the
distance distribution (modulo
normalization)

Intermediate step

For each node, we compute in sequence the
number of nodes at distance exactly ¢

Adding up over all nodes, we get the
distance distribution (modulo
normalization)

Centralities can be rewritten, e.g., harmonic:

Intermediate step

For each node, we compute in sequence the
number of nodes at distance exactly ¢

Adding up over all nodes, we get the
distance distribution (modulo
normalization)

Centralities can be rewritten, e.g., harmonic:

> |ty 1dGx) =1}

>0

How do you compute 1t?

How do you compute 1t?

Many many breadth-first visits: O(mn),

needs direct access

How do you compute 1t?

Many many breadth-first visits: O(mn),

needs direct access

Sampling: a fraction of breadth-first visits,
very unreliable results on graphs that are
not strongly connected, needs direct access

How do you compute 1t?

Many many breadth-first visits: O(mn),

needs direct access

Sampling: a fraction of breadth-first visits,
very unreliable results on graphs that are
not strongly connected, needs direct access

Edith Cohen’s [JCSS 1997] size estimation

framework: Very powerful but does not
scale or parallelize really well, needs direct

Alternative: Dittusion

Alternative: Dittusion

Basic idea: Palmer et. a/, KDD '02

Alternative: Dittusion

Basic idea: Palmer et. a/, KDD '02
Let Bi(x) be the ball of radius ¢ around «

(nodes at distance at most ¢ from x)

Alternative: Dittusion

Basic idea: Palmer et. a/, KDD '02
Let Bi(x) be the ball of radius ¢ around «

(nodes at distance at most ¢ from x)

Clearly Bo(x)={x}

Alternative: Dittusion

Basic idea: Palmer et. a/, KDD '02
Let Bi(x) be the ball of radius ¢ around «

(nodes at distance at most ¢ from x)
Clearly Bo(x)={x}
But also Br.1(x)=U.—,B:(y) U{x}

Alternative: Dittusion

Basic idea: Palmer et. a/, KDD '02
Let Bi(x) be the ball of radius ¢ around «

(nodes at distance at most ¢ from x)
Clearly Bo(x)={x}
But also Br.1(x)=U.—,B:(y) U{x}

So we can compute balls by enumerating
the arcs =y and performing set unions

A round of updates

©

A round of updates

©

A round of updates

©

A round of updates

©

A round of updates

©

A round of updates

© ©

A round of updates

© ©

A round of updates

© ©

A round of updates

© ©

A round of updates

© ©

A round of updates

© ©

A round of updates

© ©

A round of updates

A round of updates

A round of updates

A round of updates

A round of updates

Another round...

Another round...

Another round...

© ©

Another round...

© ©

Another round...

Another round...

Another round...

Another round...

Easy but expensive

Easy but expensive

Each set uses linear space; overall quadratic

Easy but expensive

Each set uses linear space; overall quadratic

Impossible!

Easy but expensive

Each set uses linear space; overall quadratic
Impossible!

But what if we use approximate sets?

Easy but expensive

Each set uses linear space; overall quadratic
Impossible!
But what if we use approximate sets?

Idea: use probabiistic counters, which
represent sets but answer just to “size?”
questions

Easy but expensive

Each set uses linear space; overall quadratic
Impossible!
But what if we use approximate sets?

Idea: use probabiistic counters, which
represent sets but answer just to “size?”
questions

Very small!

Main trick

Main trick

Choose an approximate set such that unions
can be computed quickly

Main trick

Choose an approximate set such that unions
can be computed quickly

ANF [Palmer et al., KDD ’02] uses Martin—
Flajolet (IMF) counters (log 2 + ¢ space)

Main trick

Choose an approximate set such that unions
can be computed quickly

ANF [Palmer et al., KDD ’02] uses Martin—
Flajolet (IMF) counters (log 2 + ¢ space)

We use Hyperloglog counters [Flajolet e/
al.,2007] (log log n space)

Main trick

Choose an approximate set such that unions
can be computed quickly

ANF [Palmer et al., KDD ’02] uses Martin—
Flajolet (IMF) counters (log 2 + ¢ space)

We use Hyperloglog counters [Flajolet e/
al.,2007] (log log n space)

MF counters can be combined with an OR

Main trick

Choose an approximate set such that unions
can be computed quickly

ANF [Palmer et al., KDD ’02] uses Martin—
Flajolet (IMF) counters (log 2 + ¢ space)

We use Hyperloglog counters [Flajolet e/
al.,2007] (log log n space)

MF counters can be combined with an OR

We use broadword programming to combine

HyperLogLog counters quickly!

HyperlLogl.og counters

HyperlLogl.og counters

Instead of actually Counting, we obderve a
statistical feature of a set (think stream) of
elements

HyperlLogl.og counters

Instead of actually Counting, we obderve a
statistical feature of a set (think stream) of

elements

The feature: the number of trailing zeroes of
the value of a very good hash function

HyperlLogl.og counters

Instead of actually Counting, we obderve a
statistical feature of a set (think stream) of

elements

The feature: the number of trailing zeroes of
the value of a very good hash function

We keep track of the maximum m (log log »
bits!)

HyperlLogl.og counters

Instead of actually Counting, we obderve a
statistical feature of a set (think stream) of

elements

The feature: the number of trailing zeroes of
the value of a very good hash function

We keep track of the maximum m (log log »
bits!)

The number of distinct elements o« 2~

HyperlLogl.og counters

Instead of actually Counting, we obderve a
statistical feature of a set (think stream) of
elements

The feature: the number of trailing zeroes of
the value of a very good hash function

We keep track of the maximum m (log log »
bits!)

The number of distinct elements o« 2~

Important: the counter of stream AB 1s simply

Many, many counters...

Many, many counters...

To increase confidence, we need veveral
counters (usually 2¢, />4) and take their
harmonic mean

Many, many counters...

To increase confidence, we need veveral
counters (usually 2¢, />4) and take their
harmonic mean

Thus each set 1s represented by a list of small
(typically 5-bit) counters (unlikely >6 bits!)

Many, many counters...

To increase confidence, we need veveral
counters (usually 2¢, />4) and take their
harmonic mean

Thus each set 1s represented by a list of small
(typically 5-bit) counters (unlikely >6 bits!)

To compute the union of two sets these must be
maximized one-by-one

Many, many counters...

To increase confidence, we need veveral
counters (usually 2¢, />4) and take their
harmonic mean

Thus each set 1s represented by a list of small
(typically 5-bit) counters (unlikely >6 bits!)

To compute the union of two sets these must be
maximized one-by-one

Extracting by shifts, maximizing and putting
back by shifts 1s unbearably slow

Many, many counters...

To increase confidence, we need veveral
counters (usually 2¢, />4) and take their
harmonic mean

Thus each set 1s represented by a list of small
(typically 5-bit) counters (unlikely >6 bits!)

To compute the union of two sets these must be
maximized one-by-one

Extracting by shifts, maximizing and putting
back by shifts 1s unbearably slow

1. Broadword!

TR

1

e

5

1. Broadword!

1‘ 7 M 0 M 9

1

1

o] 5 [of 5 [o] 2

0

5

1. Broadword!

1‘7 Mo Mz T

]
EEnEENEEITE

 8bits Broadword!

1‘ 7 M 0 M 9 M 1

o] 5 [of 3 _M =0=

‘2 H125H0 H124

1. Broadword!

1‘ 7 M 0 M 9 M 1

EEnEENEEITE

1‘ 9 ‘o‘ 195 M 0 M 194

s1ie Broadword!

1‘7 Mo Mz T

0] 124

1‘ 9 M 195 M 0

1

]
EEnEENEEITE

9]

1]

i1 5

1. Broadword!

1‘7 Mo Mz T

]
EEnEENEEITE
‘ 9 ‘ ‘ 195 ‘ ‘ 0 ‘ ‘ 194
1‘ 1 M 0 M 1 M 0

1. Broadword!

2 jio pl 3 11
0‘5‘0‘3_‘0‘2“5
Bt
L o pEt P
of o} T Joj 1o} 1

1. Broadword!

1l 7 o jil s ff
o| s ‘0‘3_‘0‘2 o] 5
Bt
IEE N e R
o 1 Jof & Pof & [of

1. Broadword!

7 [i[o [z]

1

1

EEnEENEEITE

‘ 9 ‘ ‘ 195 ‘ ‘ 0 ‘ 194
1‘ 1 M 0 M 1 ‘1 0
of 1 fof 1 \ 1ol
the job 137 il o fof 17

1. Broadword!

T = =
EEnEENEEITE
=== 15_‘ Eo e
b s o
o]+ o[| Jo[+ o]
e o] 127_‘1‘ 0o |o] 127

1. Broadword!

T = =
o[5 [o] 3 o] 2 o] s
| 2 [[ds [o [[14
i R
==
e o] 127_‘1‘ 0 |o] 127

1. Broadword!

-
0] ‘0‘3:‘0‘2“5
T [T o [T
i e
o+ jof | ot o]
1‘ 0 ‘0‘ 197 M 0 ‘0‘ 197

1. Broadword!

1‘ 7 M 0 M 9 M 1

0] lo] 3 Jo‘ o] 5

s
i e

o+ of | o o]

1‘ 0 ‘0‘ 197 M 0 ‘0‘ 197

Other 1deas

Other 1deas

We keep track of modifications: we do not
maximize with unmodified counters

Other 1deas

We keep track of modifications: we do not
maximize with unmodified counters

Systolic computation: each modified set
signals back to predecessors that something
1s going to happen (much fewer updates —

O(m log n) 1n expectation! [Cohen])

Other 1deas

We keep track of modifications: we do not

maximize with unmodified counters

Systolic computation: each modified set
signals back to predecessors that something
1s going to happen (much fewer updates —
O(m log n) 1n expectation! [Cohen])

Multicore exploitation by decomposition: a

task 1s updating just a batch of counters
whose overall outdegree 1s predicted using
an Elias-Fano representation of the
cumulative outdegree distribution (almost

Footprint

Footprint

Scalability: a minimum of 20 bytes per node

Footprint

Scalability: a minimum of 20 bytes per node
On a 2TiB machine, 100 billion nodes

Footprint

Scalability: a minimum of 20 bytes per node
On a 2TiB machine, 100 billion nodes

Graph structure 1s accessed by memory-

mapping in a compressed form (WebGraph)

Footprint

Scalability: a minimum of 20 bytes per node
On a 2TiB machine, 100 billion nodes

Graph structure 1s accessed by memory-

mapping in a compressed form (WebGraph)

Pointer to the graph are store using quasi-

succinct lists (Elias-Fano representation)

Performance

Performance

On a 177K nodes / 2B arcs graph, RSD
~14%:

Performance

On a 177K nodes / 2B arcs graph, RSD
~14%:

Hadoop: 2875s per iteration [Kang,
Papadimitriou, Sun and H. Tong, 2011]

Performance

On a 177K nodes / 2B arcs graph, RSD
~14%:

Hadoop: 2875s per iteration [Kang,
Papadimitriou, Sun and H. Tong, 2011]

HyperBall on this laptop: 70s per iteration

Performance

On a 177K nodes / 2B arcs graph, RSD
~14%:

Hadoop: 2875s per iteration [Kang,
Papadimitriou, Sun and H. Tong, 2011]

HyperBall on this laptop: 70s per iteration

On a 32-core workstation: 23s per iteration

Performance

On a 177K nodes / 2B arcs graph, RSD
~14%:

Hadoop: 2875s per iteration [Kang,
Papadimitriou, Sun and H. Tong, 2011]

HyperBall on this laptop: 70s per iteration

On a 32-core workstation: 23s per iteration

On ClueWeb09 (4.8G nodes, 8G arcs) on a
40-core workstation: 141m (avg. 40s per
iteration)

Harmonic centrality

Convergence

9000

_
¥00°0

lolie aAlejey

95

85

75

65

55

45

35

25

15

runs

To be tair

To be tair

Cohen’s estimation framework provides error
bounds for the relative error of the probability
mass function (and centralities)

To be tair

Cohen’s estimation framework provides error
bounds for the relative error of the probability
mass function (and centralities)

ANF/HyperANF give only pointwise guarantees,
but provide error for the absolute error of the
probability mass function (and centralities)

To be tair

Cohen’s estimation framework provides error
bounds for the relative error of the probability
mass function (and centralities)

ANF/HyperANF give only pointwise guarantees,
but provide error for the absolute error of the
probability mass function (and centralities)

Sampling provides only the latter and only for
strongly connected graphs

To be tair

Cohen’s estimation framework provides error
bounds for the relative error of the probability

mass function (and centralities)

ANF/HyperANF give only pointwise guarantees,

but provide error for the absolute error of the

probability mass function (and centralities)

Sampling provides only the latter and only for

strongly connected grap]

...but we can retrofit Co!

1S

’)
nen s estimators on

Hyper ANFE, obtaining an extremely efficient

version of Cohen’s framework!

Future Work

Future Work

Pertect and natural fit for distributed
computation (GraphLab, Pregel, etc.)

http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it

Future Work

Pertect and natural fit for distributed
computation (GraphLab, Pregel, etc.)

Apply the same computational framework to
other size estimators

http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it

Future Work

Pertect and natural fit for distributed
computation (GraphLab, Pregel, etc.)

Apply the same computational framework to
other size estimators

Edith Cohen new HIP estimators for
HyperLoglog counters might work

http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it

Future Work

Pertect and natural fit for distributed
computation (GraphLab, Pregel, etc.)

Apply the same computational framework to
other size estimators

Edith Cohen new HIP estimators for
HyperLoglog counters might work

http://webgraph.di.unimi.it/ ™
software

http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it

Future Work

Pertect and natural fit for distributed
computation (GraphLab, Pregel, etc.)

Apply the same computational framework to
other size estimators

Edith Cohen new HIP estimators for
HyperLoglog counters might work

http://webgraph.di.unimi.it/ ™
software

http://law.di.unimi.it/ " datasets

http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it
http://law.di.unimi.it

