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You have a very large graph (social, web)

You want to understand something of 1ts
global structure (not triangles/degree
distribution/etc.)

First candidate: dwtance dwstribution (and, in
the directed case, the number of reachable
patrd)

You want to understand which nodes are
tmportant 1n some sense
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Why?

Using HyperBall, we were able to evaluate
geometric centrality in an IR setting

The (preliminary) results show that
harmonic centrality has a very good signal

(in fact, better NDCG@10/P@10 than
anything we tried)

In general, HyperBall makes it possible to

use harmonic centrality on very large graphs
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Hollywood: Harmonic

George Clooney  Samuel Jackson Sharon Stone Tom Hanks

Martin Sheen Dennis Hopper  Antonio Banderas Madonna
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For each node, we compute in sequence the
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Adding up over all nodes, we get the
distance distribution (modulo
normalization)

Centralities can be rewritten, e.g., harmonic:

> |ty 1dGx) =1}

>0



How do you compute 1t?



How do you compute 1t?

Many many breadth-first visits: O(mn),

needs direct access



How do you compute 1t?

Many many breadth-first visits: O(mn),

needs direct access

Sampling: a fraction of breadth-first visits,
very unreliable results on graphs that are
not strongly connected, needs direct access



How do you compute 1t?

Many many breadth-first visits: O(mn),

needs direct access

Sampling: a fraction of breadth-first visits,
very unreliable results on graphs that are
not strongly connected, needs direct access

Edith Cohen’s [JCSS 1997] size estimation

framework: Very powerful but does not
scale or parallelize really well, needs direct
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Alternative: Dittusion

Basic idea: Palmer et. a/, KDD '02
Let Bi(x) be the ball of radius ¢ around «

(nodes at distance at most ¢ from x)
Clearly Bo(x)={x}
But also Br.1(x)=U.—,B:(y) U{x}

So we can compute balls by enumerating
the arcs =y and performing set unions
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Easy but expensive

Each set uses linear space; overall quadratic
Impossible!
But what if we use approximate sets?

Idea: use probabiistic counters, which
represent sets but answer just to “size?”
questions

Very small!
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Main trick

Choose an approximate set such that unions
can be computed quickly

ANF [Palmer et al., KDD ’02] uses Martin—
Flajolet (IMF) counters (log 2 + ¢ space)

We use Hyperloglog counters [Flajolet e/
al.,2007] (log log n space)

MF counters can be combined with an OR

We use broadword programming to combine

HyperLogLog counters quickly!
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HyperlLogl.og counters

Instead of actually Counting, we obderve a
statistical feature of a set (think stream) of
elements

The feature: the number of trailing zeroes of
the value of a very good hash function

We keep track of the maximum m (log log »
bits!)

The number of distinct elements o« 2~

Important: the counter of stream AB 1s simply
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harmonic mean

Thus each set 1s represented by a list of small
(typically 5-bit) counters (unlikely >6 bits!)
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maximized one-by-one
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Other 1deas

We keep track of modifications: we do not

maximize with unmodified counters

Systolic computation: each modified set
signals back to predecessors that something
1s going to happen (much fewer updates —
O(m log n) 1n expectation! [ Cohen])

Multicore exploitation by decomposition: a

task 1s updating just a batch of counters
whose overall outdegree 1s predicted using
an Elias-Fano representation of the
cumulative outdegree distribution (almost
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Footprint

Scalability: a minimum of 20 bytes per node
On a 2TiB machine, 100 billion nodes

Graph structure 1s accessed by memory-

mapping in a compressed form (WebGraph)

Pointer to the graph are store using quasi-

succinct lists (Elias-Fano representation)
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Performance

On a 177K nodes / 2B arcs graph, RSD
~14%:

Hadoop: 2875s per iteration [Kang,
Papadimitriou, Sun and H. Tong, 2011]

HyperBall on this laptop: 70s per iteration

On a 32-core workstation: 23s per iteration

On ClueWeb09 (4.8G nodes, 8G arcs) on a
40-core workstation: 141m (avg. 40s per
iteration)
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To be tair

Cohen’s estimation framework provides error
bounds for the relative error of the probability

mass function (and centralities)

ANF/HyperANF give only pointwise guarantees,

but provide error for the absolute error of the

probability mass function (and centralities)

Sampling provides only the latter and only for

strongly connected grap]

...but we can retrofit Co!

1S

’ )
nen s estimators on

Hyper ANFE, obtaining an extremely efficient

version of Cohen’s framework!
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Edith Cohen new HIP estimators for
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