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Abstract Product Quantization (PQ) search and its derivatives are popular and successful methods for large-scale ap-

proximated nearest neighbor search. In this paper, we review the fundamental algorithm of this class of algorithms and

provide executable sample codes. We then provide a comprehensive survey of the recent PQ-based methods.
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1. Introduction

With the explosive growth in multimedia data, effi-

ciently indexing and searching large-scale data is a fun-

damental operation of media search systems. In most

situations involving multimedia data, the brute-force

exhaustive search has a prohibitive cost both for run-

time and memory space. Therefore we focus on the

approximated nearest neighbor search (ANN) setup:

Given a query vector, our objective is to efficiently find

similar vectors from a collection of database vectors,

taking into account resources constraints.

Product Quantization (PQ)26) and its extensions are

popular and successful ANN methods for handling

large-scale data. Each database vector is quantized

into a short code, which we call a PQ-code or simply

a code in this paper. The search is conducted over

the PQ-codes efficiently using lookup tables. PQ offers

three attractive properties: (1) PQ compresses an in-

put vector into a short code (e.g., 64-bits), that enables

it to handle typically one billion data points in mem-

ory at once; (2) the approximate distance between a

raw vector and a compressed PQ code is computed effi-

ciently (the so-called asymmetric distance computation

(ADC)), which is a good estimate of the original Eu-

clidean distance; and (3) the data structure and coding

algorithms are simple, which allow hybridization with

other indexing structures.

The goal of this paper is to provide a comprehen-

sive survey of recent quantization-based techniques, in-
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cluding generalized representations of PQ encoding4)51),

practical large-scale systems with an inverted in-

dex structure30), and hardware-based accelerations1)29).

In addition, we introduce an executable example of

Python codes for PQ, which highlights the simplicity

of the data structure of PQ.

The remainder of the paper is organized as follows.

We first formulate the search problem in Sec. 2. In

Sec. 3, the fundamental algorithm of PQ is reviewed

with example codes. Sec. 4 describes variations overs

PQ encoding, which generalizes the initial framework.

The inverted indexing systems with PQ are reviewed in

Sec. 5. Further related applications are introduced in

Sec. 6.

2. Approximated Nearest Neighbor Search

Problem

In this section, we first define the nearest neigh-

bor search problem, then formulate the approximated

nearest neighbor search. Let us denote a database as

N D-dimensional vectors X = {xn}Nn=1, where each

xn ∈ R
D. Given a query vector y ∈ R

D, the search is

formulated as finding the database item that minimizes

the distance measure to the query:

n� = argmin
n∈{1,...,N}

‖y − xn‖22. (1)

A distance function can be any distance measure such

as L1 norm, etc. We focus on distances in the paper

and in particular the distance induced by the Euclidean

norm. Yet similarity search may also require to con-

sider other measurements such as cosine similarity, in

which case we look for elements maximizing the mea-

sure. Eq. (1) can be solved by a simple linear scan,

which takes O(DN) of computational cost with 4DN

bytes of the memory space∗.
∗ In this paper, we assume that a real value is represented by a 32
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In real world applications, approximated nearest

neighbors (ANN) are often more attracting to achieve

better trade-offs between accuracy and resources. Such

ANN methods compute an approximation of the re-

sults of Eq. (1), trading some accuracy with faster run-

time and lower memory usage. In the previous decades,

several ANN methods have been developed, including

Locality Sensitive Hashing13)17) and tree-based meth-

ods8)11)35), to mention only a few. These particular

methods work well for relatively small- or medium-

scale data, i.e., up to a few dozen millions elements

in the index. However, if the size of the database

becomes larger, these approaches require huge storage

costs. This does not make them a practical option for

handling a large-scale data such as N = 109.

Recently, there has been a sustained interest on sim-

ilarity search method employing short-codes. Such

methods first convert an input vector into a memory-

efficient short code, The search is performed using the

resulting short codes. These short-code-based meth-

ods are categorized into binary-based43) and PQ-based

methods. Binary-based methods convert an input vec-

tor to a binary vector. The conversion is designed to

make the Hamming distance between the two binary

strings is a monotonous function of the original distance

measure. These two methods are complementary14).

Binary-based methods offer a faster distance compu-

tation, whereas PQ-based methods achieve a more ac-

curate result for a given memory constraint. In this

paper, we review PQ-based methods. Please see43)46)

for detailed surveys on binary-based methods

3. Product Quantization: Overview

Product Quantization has been originally proposed

in the source coding literature19). Jégou et al. applied

the idea to the ANN problem26) by demonstrating that

(1) PQ can be used to compress high-dimensional fea-

ture vectors, (2) the distance between an original vector

and a PQ-encoded code can be efficiently approximated,

and (3) fast search system can be built by combining

PQ-encoding and inverted indexing. In this section, we

briefly review the algorithm of PQ.

3. 1 Encoding

We first show how to encode a real-valued vector into

a short code. We employ the following notation in the

remainder of the paper. Given a D-dimensional vector

x ∈ R
D, let us represent it as a concatenation of M

bit float.

sub-vectors.

x = [x1, x2, . . . , xD/M︸ ︷︷ ︸
x1�

, . . . , xD−D/M+1, . . . , xD︸ ︷︷ ︸
xM�

]�

=
[
x1�, . . . ,xM�]�

, (2)

where mth sub-vector is denoted as xm ∈ R
D/M , for

each m ∈ {1, . . . ,M}.
Next, let us describe how to encode a vector. The

idea is to independently encode each sub-vector to an

identifier, and to represent the vector as a concatenation

of the identifiers. In a training phase, a sub-codebook

for each m ∈ {1, . . . ,M} is created: Cm = {cmk }Kk=1,

where we call each cmk ∈ R
D/M as a sub-codeword. The

number K of sub-codewords for each sub-codebook is

a parameter specified by a user. Cm is trained by run-

ning the standard k-means clustering over the mth part

of the training vectors.

An input vector x is encoded as follows. First, a sub-

encoder for mth sub-vector is introduced; im : RD/M →
{1, . . . ,K}. The mth sub-encoder im(·) is a function

that returns the identifier of the nearest sub-codeword

from Cm. It is formally defined as follows.

im (xm) = argmin
k∈{1,...,K}

‖xm − cmk ‖22. (3)

This search is performed by linearly comparing a D/M -

dimensional sub-vector to K sub-codewords, which has

a computational complexity of O(DK/M). Therefore

the overall encoding complexity of a given vector is

O(DK).

Next, an encoder, i : RD → {1, . . . ,K}M , is defined

as a concatenation of M sub-encoders:

i(x) =
[
i1
(
x1

)
, . . . , iM

(
xM

)]�
. (4)

The encoder breaks a given input vector into M sub-

vectors, then applies sub-encoder for each sub-vectors.

We call the resulting concatenation of identifiers a PQ-

code because the above encoding step is that of a prod-

uct quantizer. Given an input vector x and a codebook

C = {Cm}Mm=1, the quantization error e(x; C) in the en-

coder affects the accuracy in PQ-based ANN, which is

routinely measured by the square Euclidean loss as

e(x; C) =
M∑

m=1

min
k∈{1,...,K}

‖xm − cmk ‖22. (5)

3. 2 Decoding (reconstruction)

An advantage of PQ is that the original vector can

be approximately reconstructed from a PQ-code. Let
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us denote a PQ-code∗ of a vector x as i(x) = ix =

[i1, . . . , iM ]� ∈ {1, . . . ,K}M . The original vector x is

approximately reconstructed as x̃ using the PQ-code ix

and a decoder i−1 : {1, . . . ,K}M → C1 × · · · × CM as

follows.

x̃ = i−1(ix) = i−1

⎛
⎜⎜⎝

⎡
⎢⎢⎣
i1

...

iM

⎤
⎥⎥⎦

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣
c1i1
...

cMiM

⎤
⎥⎥⎦ , (6)

where x̃ ∈ C1 × · · · × CM ⊂ R
D is a reconstructed (de-

coded)D-dimensional vector. Given a PQ-code, the de-

coder i−1(·) fetches sub-codewords from the codebook

C = C1× · · ·× CM by using the PQ-codes as indicators.

This is an appealing property of PQ-based methods

compared to binary-based methods, for which the re-

construction from the original vectors is non-trivial and

less accurate and typically discards the vector norm.

3. 3 Memory consumption

PQ is typically employed with aggressive compres-

sion rates to ensure that the produced PQ-codes are

compact in memory. Because a PQ-code composes of

M integers ranging from 1 to K, the memory cost of a

PQ-code is M log2 K bits. The parameters M and K

therefore control the trade-off between reconstruction

quality and memory. To represent each integer using

uchar (8 bit), K is typically set as 256. Then the PQ-

code is represented by 8M [bit]. Larger values of M

lead to better accuracy but slower performance. The

performance of PQ-based (and binary-based) methods

are often compared by fixing M , for instance by choos-

ing M = 8 to compare 64-bit codes.

Since a D-dimensional feature vector is represented

by 32D bits, a PQ-code with K=256 compresses the

original feature by 32D/8M = 4D/M . For example,

128-dimensional real-valued features represented by 64

bit PQ codes are 64× more memory efficient.

3. 4 Distance computation

Given a query feature vector and a PQ-code, the

squared Euclidean distance between the query and the

original vector of the PQ-code can be effectively ap-

proximated, in particular by the so-called Asymmetric

Distance Computation (ADC).

Let us define a query vector as y ∈ R
D, and a PQ-

code ix = [i1, . . . , iM ]� ∈ {1, . . . ,K}M . To approxi-

mate the squared distance between the query and the

original vector of the PQ-code (d(y,x)2), we define the

∗ Note that ix is a constant (a concatenation of integers), not a

function. The subscript x indicates that the PQ-code ix is ob-

tained by encoding a feature vector x.

Asymmetric Distance d̃(·, ·)2 as the distance between

the query and the reconstructed vector from the PQ-

code, i.e.,

d(y,x)2 ≈ d̃(y,x)2 = d(y, x̃)2. (7)

This can be computed by explicitly reconstructing x̃ by

Eq. (6). However but such a direct computation has a

complexity similar to that of a linear search with the

original vectors.

The ADC efficiently computes Eq. (7). The computa-

tion consists of (1) constructing a distance table (lookup

table) and (2) fetching distances. Given y, for each

sub-vector ym ∈ R
D/M (m ∈ {1, . . . ,M}), we compute

the distances between ym and the K sub-codewords

cmk ∈ Cm, and then store them in the distance table

A : {1, . . . ,M} × {1, . . . ,K} → R. More explicitly, this

distance table is defined as follows.

A(m, k) = d (ym, cmk )
2
. (8)

The table A is simply represented as a matrix (2D ar-

ray). This computation takes O(DK) operations, and

is performed just once per query.

Next, given a database PQ-code ix = [i1, . . . , iM ]�,
the Asymmetric Distance d̃ is obtained as follows.

d̃(y,x)2 = d(y, x̃)2 (9)

=

M∑
m=1

d (ym, cmim)
2
=

M∑
m=1

A(m, im).

Because the squared distance is computed for each di-

mension independently, we can compute separately the

square distance of each mth sub-vector. From Eq. (6),

the mth sub-vector of the reconstructed vector equals

to cmim . The square distance between ym and each sub-

codeword is already computed and recorded in A, and

therefore is fetched by taking the entry identified by

m and im. Summing the M fetched values provides

the Asymmetric Distance. This computation takes only

O(M) table look-ups.

To evaluate the distances for N database PQ-codes,

the total computational cost is O(DK + MN). Typi-

cally, the dominant factor is N , which can be a million

or even a billion. The construction cost of the distance

table can be negligible in many cases.

In summary, with the ADC technique, users can ap-

proximate the distances between a query and database

PQ-codes without explicitly reconstructing the vectors.

3. 5 Sample codes

One appealing advantage of PQ is its simplicity. List-

ing 1 shows Python codes of the whole algorithm of PQ,
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import numpy as np
from scipy.cluster.vq import vq, kmeans2
from scipy.spatial.distance import cdist

def train(vec, M):
Ds = int(vec.shape[1] / M) # Ds = D / M
# codeword[m][k] = cm

k
codeword = np.empty((M, 256, Ds), np.float32)

for m in range(M):
vec_sub = vec[:, m * Ds : (m + 1) * Ds]
codeword[m], label = kmeans2(vec_sub, 256)

return codeword

def encode(codeword, vec): # vec = {xn}N
n=1

M, _K, Ds = codeword.shape
# pqcode[n] = i(xn), pqcode[n][m] = im(xm

n )
pqcode = np.empty((vec.shape[0], M), np.uint8)

for m in range(M): # Eq. (3) and Eq. (4)
vec_sub = vec[:, m * Ds: (m + 1) * Ds]
pqcode[:, m], dist = vq(vec_sub, codeword[m])

return pqcode

def search(codeword, pqcode, query):
M, _K, Ds = codeword.shape
# dist_table = A(m, k)
dist_table = np.empty((M, 256), np.float32)

for m in range(M):
query_sub = query[m * Ds: (m + 1) * Ds]
dist_table[m, :] = cdist([query_sub],

codeword[m], 'sqeuclidean')[0]↪→

dist = np.sum(dist_table[range(M), pqcode],
axis=1)↪→

return dist

if __name__ == "__main__":
# Read vec_train, vec ({xn}N

n=1), and query (y)
M = 4
codeword = train(vec_train, M)
pqcode = encode(codeword, vec)
dist = search(codeword, pqcode, query)
print(dist)

Listing 1: Python scripts of PQ

including training a codebook, encoding vectors, and

searching. These sample codes are not pseudo codes

but executable scripts. The whole algorithm can be

written in only several lines.

3. 6 Search system with inverted indexing

The linear scan with ADC is fast compared to the

direct linear search, but still slow for a large number

of N . To handle million- or even billion-scale search, a

search system with inverted indexing was developed in

the original PQ paper26).

As a pre-processing stage, N database items X =

{x1, . . . ,xN} are grouped into J disjoint buckets∗,
X1, . . . ,XJ . This assignment is conducted in the same

manner as a coarse-quantization step explained later.

Each bucket has a representative vector, μj ∈ R
D. For

each bucket, the difference between the representative

vector and each item x ∈ Xj is computed. This resid-

ual, x−μj , is encoded into a PQ-code, and stored as a

posting-list for each jth bucket.

In the online search step, the system operates in two

stages; coarse-quantization and distance-estimation.

∗ Note that Xj satisfies (1) Xj ⊂ X for all j, (2) X =
⋃J

j=1 Xj , and

(3) Xj1
∩ Xj2

= ∅ for all j1, j2 ∈ {1, . . . , J} such that j1 |= j2.

•Coarse-quantization: Given a query vector y ∈
R

D, the nearest bucket Xj is selected. The residual

y−μj between the query and the representative vector

of the jth bucket is computed.

•Distance-estimation: The PQ-codes associated

with the selected bucket are retrieved by traversing the

posting list. The nearest neighbors are then obtained

using ADC between the residual vector y−μj and these

PQ-codes.

In this architecture, the search space is restricted by

the coarse-quantization. Only the database items in the

selected bucket(s) are considered.

Originally, Inverted file system with the asymmet-

ric distance computation (IVFADC) was proposed in

the original PQ paper26). In IVFADC, the coarse-

quantization step is a simple nearest neighbor search

for representative vectors. The distance-estimation step

is ADC between the query and PQ-codes encoding the

residual vectors of the database vectors. This approach

can search in N = 109 data points in 10–100ms, typi-

cally.

In summary, the original paper proposed (1) the PQ-

encoding scheme and (2) the search system with in-

verted indexing. In the next sections, we review some

subsequent improvements of PQ-based methods by fo-

cusing these two aspects.

4. Generalization and Improvement of

PQ Encoding

This section reviews extensions building upon PQ-

encoding to improve accuracy or speed. The relation

among the methods is visualized in a blue-shaded area

in Fig. 1.

4. 1 Pre-rotation (OPQ)

The original PQ simply divides an input vector into

sub-vectors uniformly, without taking the data distribu-

tion into consideration. This works well for a structured

vector such as SIFT, but it is not always the case, e.g.,

D/M -dimensional sub-vectors do not have any mean-

ings. For such general cases, the original paper pro-

posed to apply a random rotation for all vectors prelim-

inary (x← Rx, where R ∈ R
D×D is a random rotation

matrix) to make dimensions uncorrelated. Then the au-

thors27) proposed to optimize an orthogonal matrix by

a set of reflection with a variance balancing criterion.

Optimized Product Quantization (OPQ)15) extended

this idea∗∗. OPQ computes a rotation (orthogonal) ma-

∗∗ Note that the same idea was proposed in Cartesian k-means37)

at the same conference independently.
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Fig. 1 A relation of PQ-based methods.

trix R ∈ R
D×D (R�R = I) that minimizes the quan-

tization error iteratively. All vectors are rotated by R

preliminarily. The training phase of OPQ repeats two

steps: (1) All training vectors are rotated by applying

R, then codewords are trained as in the same manner

with PQ. (2) Given trained codewords, R is updated

by solving Orthogonal Procrustes Problem18). OPQ is

a straightforward extension of PQ, and always boosts

the accuracy with a moderate additional cost of apply-

ing the rotation matrix. OPQ has been one of the most

widely used improvements over PQ.

4. 2 Generalization (AQ, CQ)

Additive Quantization (AQ)4)32) and Composite

Quantization (CQ)51) generalize the PQ representation.

The original PQ represents a vector as the concatena-

tion of M D/M -dimensional vectors. On the other

hand, AQ and CQ represent a vector as the sum of

M D-dimensional vectors. The mth sub-codebook is

denoted by Cm = {cmk }Kk=1 where cmk ∈ R
D. An in-

put vector x is still encoded as a vector of indices

i(x) = ix = [i1, . . . , iM ]�, but now the reconstructed

vector is obtained as

x̃ = i−1(ix) = i−1

⎛
⎜⎜⎝

⎡
⎢⎢⎣
i1

...

iM

⎤
⎥⎥⎦

⎞
⎟⎟⎠ =

M∑
m=1

cmim . (10)

Unlike Eq. (6), the vector is reconstructed by adding the

sub-codewords. Note that the encoder i(·) is no more

simple nearest neighbor search for sub-codewords.

If we restrict each sub-codeword such that only val-

ues for mth region is nonzero, Eq. (10) becomes Eq. (6).

This shows that PQ is a special case of AQ/CQ.

Given a query y and a AQ/CQ-code ix, the asym-

metric distance is computed as follows.

d(y, x̃)2 =

∥∥∥∥∥y −
M∑

m=1

cmim

∥∥∥∥∥
2

2

(11)

= ‖y‖22 − 2

M∑
m=1

y�cmim +

M∑
m1=1

M∑
m2=1

(cm1
im1 )

�cm2
im2 .

Here, we can ignore the first term because it is constant

for all database items. The second term can be pre-

computed and fetched in the similar manner as ADC;

creating a lookup tables beforehand (O(DKM)) and

fetching values on-line (O(M)). The problem is how to

compute the third term. If we take the same strategy

for the second term, on-line fetching takes O(M2) of the

computational cost. This becomes the bottleneck of the

computation. AQ and CQ proposed different ways to

compute this term efficiently.

In AQ, an additional 1 byte scalar quantization is em-

ployed to store the third term. At query time, the value

is simply fetched with O(1). In CQ, the sub-codewords

are trained such that the third term (the inner product

between sub-codewords) is approximately the same con-

stant value. Note that, in the original PQ, this term is

always zero because all sub-codebooks are orthogonal.

We can characterize PQ, AQ, and CQ, by the handling

of the third term.
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Table 1 The comparison of the accuracy for SIFT1M

data, 64-bit Codes. The values are from38).

Method Recall@1 Recall@10 Recall@100

PQ26) 0.224 0.599 0.924

CKM/OPQ15)37) 0.243 0.638 0.940

AQ4) 0.298 0.741 0.972

CQ51) 0.288 0.716 0.967

OCK45) 0.274 0.680 0.945

TQ6) 0.317 0.748 0.972

CompQ38) 0.352 0.795 0.987

Because AQ and CQ are generalizations of PQ, the

reconstruction error of AQ/CQ is better than that of

PQ. On the other hand, training, encoding, and search-

ing of AQ/CQ require more complex steps, which leads

more computational cost.

4. 3 Alternative coding strategies

To achieve a better accuracy (reconstruction error),

several encoding strategies have been proposed. The

main idea is to design a better way to assign codewords

to an input vector.

Optimized Ck-means45) extended Cartesian k-means.

In PQ, each dimension of a vector is represented by

a single codeword. Optimized Ck-means use multiple

codewords to represent each dimension to achieve lower

reconstruction errors.

Tree quantization (TQ)6) follows a similar idea. TQ

creates an assignment tree that optimizes the best as-

signment of codewords for each dimension.

Some works borrow the idea of residual encoding12)38),

which is another classical approach for source-coding.

CompQ38) proposed an effective training strategy for

residual encoding, and showed that this simple encoding

works well for the ANN task. Other extensions aiming

at improving the representation power of PQ include

sparse-coding for the encoding stage25)36).

The above strategies usually improve the accuracy of

PQ-encoding with the additional assignment cost.

Table 1 shows the comparison of the accuracy among

the methods introduced in this section.

4. 4 Novel problem settings

Although the original objective of PQ is to solve the

general ANN search problem, other settings have been

considered in the literature.

How to make the computational cost of per-query

pre-processing (not the distance search cost over the

database) fast is an open problem, especially for the

complex encoding such as AQ/CQ. This is especially

important for high-dimensional vectors because per-

query pre-processing (building distance tables) depends

on D. Sparse Composite Quantization (SCQ)52) re-

vealed that the second term of Eq. (12) can be effi-

ciently computed if the elements of sub-codewords are

sparse. SCQ achieved the same level of the accuracy as

CQ with almost the same computational cost of PQ.

Supervised Quantization47) extends the CQ for a su-

pervised manner. PQ-based methods have been orig-

inally developed for an unsupervised setting, whereas

the supervised search problem has been handled by

binary-based methods. It is reported that Supervised

Quantization achieved a better performance compared

to binary-based supervised methods, however the setup

employed for evaluation has been recently questioned

by some researchers40).

Collaborative Quantization53) incorporated multi-

modal data source such as texts and images. This also

outperforms the competitors of binary-based methods.

5. Inverted indexing system with PQ

As described in Sec. 3. 6, the original IVFADC con-

sists of two steps, coarse-quantization and distance-

estimation. In this section, we review some of the im-

provements proposed when PQ is combined with an in-

verted indexing system. These variations are visualized

with a yellow-shaded region in Fig. 1.

5. 1 Improvement of coarse-quantization

The coarse-quantization step is critical for the run-

time performance. IVFADC uses the simple nearest

neighbor search for assignment a vector to the coarse

centroids, which is the same operation as a standard

k-means assignment.

The joint Inverted Indexing50) proposes a multiple

k-means assignment strategy to increase the accuracy.

Inverted Multi Indexing (IMI)3)5) replaces the k-means

coarse quantizer by a product quantizer. IMI achieves

a good balance between the runtime and the accuracy,

and has been widely used. IMI divides the data space

as the Cartesian product of two spaces, which amounts

to applying PQ on the coarse level with M = 2. In the

indexing phase, each database item is assigned to one

the buckets (Cartesian spaces) using PQ. In the search

step, the nearest buckets to a query are enumerated us-

ing Multi Sequence Algorithm3). The items inside the

selected buckets are distance-estimated using ADC.

Several extensions of IMI were proposed. By reduc-

ing the search space with upper/lower error bounds,

the faster version of Multi Sequence Algorithm was

proposed24). PQTable34) presented a method to search

without the distance-estimation step.
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Another strategy makes use of hierarchical quantizer

as a coarse-quantization7), which especially works well

for non-structured data such as deep features (e.g.,

GoogLeNet activations).

5. 2 Improvement of distance-estimation

Next, we review the methods to improve the distance-

estimation stage. This step is directly related to the

accuracy of the whole system. PQ-encoding for the

residual between the representative vector and the data

point was used for the original IVFADC.

A two step approach for distance-estimation was

proposed28), where the residual-encoding is computed

twice, but at query time only the distances to the most

promising candidate vectors are evaluated. A special

data structure to refine the error of this encoding step

was proposed22).

Originally, the same sub-codewords were used for

encoding the residual associated with the database

vectors. It has been shown that learning a product

quantizer per inverted list improve the performance30).

These local sub-codewords for a bucket are created by

training only vectors within the bucket. The downside

of this approach is that it requires a large set of training

data, as well as storing a large volume of centroids.

In the journal version of IMI paper5), the combina-

tion of (1) coarse quantization with IMI, (2) OPQ for

both coarse-quantization and distance-estimation, and

(3) local codebooks, was proposed. This system is one

of the baseline of the state-of-the-art search systems

that can handle billion-scale data.

6. Related Topics

In this section, we introduce several topics related to

PQ-based methods (the right part in Fig. 1).

First, hardware-based accelerations have been con-

sidered. To fully make use of SIMD operations for fast

search, methods that fit the data into SIMD registers

were proposed1)2)10) to accelerate the search. With the

wide spread of deep learning techniques, GPU is now

becoming a common hardware in the computer vision

community. Fast search with GPUs begins to be stud-

ied29)48), which might be one of the next promising di-

rections for ANN research.

As reviewed in Sec. 1, binary-based methods are

complementary to PQ-based methods. The connec-

tion of these two areas was rapidly discussed. Polyse-

mous codes14) offer the properties of both binary-based

and PQ-based methods. The codes are essentially PQ-

codes, but the Hamming distance of the two codes re-

flects the original Euclidean distance as in the binary-

based methods. K-means Hashing21) is one of binary-

based methods. We can interpret that K-means Hash-

ing trains a binary code that approximates the PQ-

codes, and it is one of the most effective binarization

strategy. From the viewpoint of distance-tables, the

tables of PQ-based methods are filled by the distances

among codewords, whereas those of binary-based meth-

ods are filled by the Hamming distances. These rela-

tions were intensively investigated44).

Further additional bits can be added to PQ-code to

improve the accuracy23).

Image search with PQ is one of the main applications

using PQ. Several works have evaluated the search per-

formance27)31)42).

The main idea of PQ is computing distances table

among codewords beforehand, such that on-line pro-

cessing can be efficiently computed by looking up the

tables. With PQ-encoding, the data representation

becomes memory efficient because the data are pre-

sented as a quantized PQ-code. This idea has been

widely used in several areas. One of the most ac-

tive areas is quantization of Deep Neural Networks

(DNN). To achieve memory-efficient and fast DNN ar-

chitecture, several strategies have been intensively re-

searched including pruning20), factorization41), binariza-

tion39), sparsifying41), etc. Quantization is also one of

such strategies9)49). Another application includes effi-

cient sparse-coding using PQ-based approach16), fast

computation of PCA-tree8), and clustering33).

7. Conclusion

In this paper, we introduce the fundamental algo-

rithm of Product Quantization with executable sample

codes. We have reviewed several advances on top of the

initial technique. We hope this review paper helps to

solve a large-scale search problem.

Appendix

This work was supported by JST ACT-I Grant Num-

ber JPMJPR16UO and JSPS KAKENHI Grant Num-

ber 16H07411.
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descriptors into a compact image representation. In Proc. IEEE

CVPR, 2010.
28) H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in

one billion vectors: Re-rank with source coding. In Proc. IEEE

ICASSP, 2011.
29) J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity

search with gpus. CoRR, abs/1702.08734, 2017.
30) Y. Kalantidis and Y. Avrithis. Locally optimized product quan-

tization for approximate nearest neighbor search. In Proc. IEEE

CVPR, 2014.
31) J. Li, X. Lan, X. Li, J. Wang, N. Zheng, and Y. Wu. Online vari-

able coding length product quantization for fast nearest neighbor

search in mobile retrieval. IEEE TMM, 19(3):559–570, 2017.
32) J. Martinez, J. Clement, H. H. Hoos, and J. J. Little. Revisiting

additive quantization. In Proc. ECCV, 2016.
33) Y. Matsui, K. Ogaki, T. Yamasaki, and K. Aizawa. Pqk-means:

Billion-scale clustering for product-quantized codes. In Proc.

MM, 2017.
34) Y. Matsui, T. Yamasaki, and K. Aizawa. Pqtable: Fast exact

asymmetric distance neighbor search for product quantization

using hash tables. In Proc. IEEE ICCV, 2015.
35) M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms

for high dimensional data. IEEE TPAMI, 36(11):2227–2240,

2014.
36) Q. Ning, J. Zhu, Z. Zhong, S. C. H. Hoi, and C. Chen. Scalable

image retrieval by sparse product quantization. IEEE TMM,

19(3):586–597, 2017.
37) M. Norouzi and D. J. Fleet. Cartesian k-means. In Proc. IEEE

CVPR, 2013.
38) E. C. Ozan, S. Kiranyaz, and M. Gabbouj. Competitive quan-

tization for approximate nearest neighbor search. IEEE TKDE,

28(11):2884–2894, 2016.
39) M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neural

networks. In Proc. ECCV, 2016.
40) A. Sablayrolles, M. Douze, N. Usunier, and H. Jégou. How should

we evaluate supervised hashing? In Proc. IEEE ICASSP, pages

1732–1736. IEEE, 2017.
41) T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and

B. Ramabhadran. Low-rank matrix factorization for deep neural

network training with high-dimensional output targets. In Proc.

IEEE ICASSP, 2013.
42) E. Spyromitros-Xioufis, S. Papadopoulos, I. Y. Kompatsiaris,

G. Tsoumakas, and I. Vlahavas. A comprehensive study over vlad

and product quantization in large-scale image retrieval. IEEE

TMM, 16(6):1713–1728, 2014.
43) J. Wang, W. Liu, S. Kumar, and S.-F. Chang. Learning to hash

for indexing big data - a survey. Proc. IEEE, 2015.
44) J. Wang, H. T. Shen, S. Yan, N. Yu, S. Li, and J. Wang. Opti-

mized distances for binary code ranking. In Proc. MM, 2014.
45) J. Wang, J. Wang, J. Song, X.-S. Xu, H. T. Shen, and S. Li. Op-

timized cartesian k-means. IEEE TKDE, 27(1):180–192, 2015.
46) J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen. A survey

on learning to hash. CoRR, abs/1606.00185, 2016.
47) X. Wang, T. Zhang, G.-J. Qi, J. Tang, and J. Wang. Supervised

quantization for similarity search. In Proc. CVPR, 2016.
48) P. Wieschollek, O. Wang, A. Sorkine-Hornung, and H. P. A.

Lensch. Efficient large-scale approximate nearest neighbor search

on the gpu. In Proc. CVPR, 2016.
49) J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized con-

volutional neural networks for mobile devices. In Proc. IEEE

CVPR, 2016.
50) Y. Xia, K. He, F. Wen, and J. Sun. Joint inverted indexing. In

Proc. IEEE ICCV, 2013.
51) T. Zhang, C. Du, and J. Wang. Composite quantization for ap-

proximate nearest neighbor search. In Proc. ICML, 2014.
52) T. Zhang, G.-J. Qi, J. Tang, and J. Wang. Sparse composite

quantization. In Proc. IEEE CVPR, 2015.
53) T. Zhang and J. Wang. Collaborative quantization for cross-

modal similarity search. In Proc. CVPR, 2016.

Yusuke Matsui received the B.E, M.A.,
and Ph.D. in information science and technology
from the University of Tokyo in 2011, 2013, and
2016, respectively. He is currently a postdoc-
toral researcher at National Institute of Informat-
ics, Japan. His research interests lie in computer
vision, computer graphics, and multimedia process-
ing, with particular interest in image retrieval.

Yusuke Uchida received his B.E. and
M.E. from Kyoto University, Kyoto, Japan, in 2005
and 2007 respectively. He received his Ph.D. degree
in information science and technology from the Uni-
versity of Tokyo in 2016. His research interests in-
clude large-scale content-based multimedia retrieval
and deep learning-based image recognition. He is
currently with DeNA Co., Ltd.
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