IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.37, NO.6, JUNE 2015

1247

The Inverted Multi-Index

Artem Babenko and Victor Lempitsky

Abstract—A new data structure for efficient similarity search in very large datasets of high-dimensional vectors is introduced. This
structure called the inverted multi-index generalizes the inverted index idea by replacing the standard quantization within inverted
indices with product quantization. For very similar retrieval complexity and pre-processing time, inverted multi-indices achieve a much
denser subdivision of the search space compared to inverted indices, while retaining their memory efficiency. Our experiments with
large datasets of SIFT and GIST vectors demonstrate that because of the denser subdivision, inverted multi-indices are able to return
much shorter candidate lists with higher recall. Augmented with a suitable reranking procedure, multi-indices were able to significantly
improve the speed of approximate nearest neighbor search on the dataset of 1 billion SIFT vectors compared to the best previously
published systems, while achieving better recall and incurring only few percent of memory overhead.

Index Terms—Image retrieval, Index, nearest neighbor search, product quantization

*

1 INTRODUCTION

N computer vision, inverted indices (inverted files) [1] are

widely used for retrieval and similarity search. For a large
dataset of visual descriptors, a typical inverted index is built
around a codebook containing a set of codewords, i.e. a repre-
sentative set of vectors that may be constructed by perform-
ing clustering on the initial dataset. An inverted index then
stores the list of vectors that lie in the proximity of each code-
word (belong to its Voronoi cell). The purpose of an inverted
index is then to efficiently generate a list of dataset vectors
that lie close to any query vector. Given a query, either the
closest codeword or a set of few closest codewords are identi-
fied. The lists corresponding to those codewords are then
concatenated to produce the answer to the query.

Querying the inverted index avoids evaluating distances
between the query and every point in the dataset and, thus,
provides a substantial speed-up over the exhaustive search.
Furthermore, as the index does not need to contain the origi-
nal dataset vectors to perform the search, the memory foot-
print of each data point can be reduced significantly, and
only useful metadata (e.g. image IDs or heavily compressed
original vectors) can be stored in the list entries. Because of
these efficiency benefits, inverted indices are widely used
within computer vision systems such as image and video
search [1] or location identification [2]. More generally, they
can be used within any computer vision task that involves
fast near(est) neighbor retrieval or kernel density estimation
(i.e. image classification [3], [4], understanding [5], image
editing [6], etc.).

The efficiency of inverted indices has however certain
limitations that begin to show up for very large datasets of

e A. Babenko is with Yandex, Moscow, Russia, and the Higher School of
Economics, National Research University.
E-mail: artem.babenko@phystech.edu.

o V. Lempitsky is with the Skolkovo Institute of Science and Technology,
Moscow, Russia. E-mail: victorlempitsky@gmail.com.

Manuscript received 14 July 2013; revised 30 July 2014; accepted 3 Sept. 2014.
Date of publication 1 Oct. 2014; date of current version 8 May 2015.
Recommended for acceptance by R. Manmatha.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPAMI1.2014.2361319

vectors (hundreds of million to billions), which computer
vision researchers and practitioners are now tackling [7],
[8], [9]. In this scenario, a very fine partition of the search
space is desirable to avoid returning excessively large lists
in response to the queries or, put differently, to return vec-
tors that are better localized around the query point. Unfor-
tunately, increasing the number of codewords in order to
achieve finer partition also increases the query time and the
index construction time. While approximate nearest neigh-
bor (ANN) approaches (e.g. tree codebooks [10] or kd-trees
[11]) may be invoked to make this deceleration graceful,
these techniques often reduce the accuracy (recall and preci-
sion) of the returned candidate lists considerably.

The goal of this paper is to introduce and evaluate a new
data structure called the inverted multi-index that is in many
respects similar to the inverted index and can therefore be
used within computer vision systems in a similar way. The
advantage of multi-indices is in their ability to produce
much finer subdivisions of the search space without increas-
ing the query time and the preprocessing time compared to
inverted indices with moderately-sized codebooks (impor-
tantly, the relative increase of memory usage for large data-
sets is also small). Consequently, multi-indices result in
faster and more accurate retrieval and approximate nearest
neighbor search, especially when dealing with very large
scale datasets, while retaining the memory efficiency of
standard inverted indices.

In a nutshell, inverted multi-indices are obtained by
replacing the vector quantization inside inverted indices
with the product quantization (PQ) [12]. PQ proceeds by split-
ting high-dimensional vectors into dimension groups. PQ
then effectively approximates each vector as a concatenation
of several codewords of smaller dimensionality, coming
from several codebooks pretrained for each group of dimen-
sions separately. Following the PQ idea, an inverted multi-
index is constructed as a multi-dimensional table. The
entries of this table correspond to all possible tuples of code-
words from the codebooks corresponding to different
dimension groups. This multi-dimensional table replaces a
“flat” table containing entries corresponding to codewords
of the standard inverted index.

0162-8828 © 2014 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

Authorized licensed use limited to: UNIVERS hif: DEGLié & Tt uDidetibrsNDanBovstiodl

litedians/deineéryet NRORS mbrE0r@9 BT C from IEEE Xplore. Restrictions apply.

1248 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.37, NO.6, JUNE 2015
1 g .
0.9 o [%] %
R] & |ee A4
08| || SupeETE: . .
0.7 NI R .
J STl L]
0.6] S TR W
‘Zhet ofe %o @ T2
R R Sy
0.5 4 | NN PP O
MY L] o | & e e .
0.4 ST, PHEAG AR
. '.’.: SR MO NI
° . ‘- ... Ll . . S
03 of Y e l"‘ .; » of
R T e N
0.2 e .
0.1 el "
0 L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

inverted index (codebook size = 16) inverted multi-index (codebook size = 16)

Fig. 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left - the inverted index based on standard
quantization (the codebook has 16 2D codewords; boundaries are in green). Right - the inverted multi-index based on product quantization (each of
the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the same for both structures. Two
example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left) contain 45 and 62 words respectively
(circled). Note that when a query lies near a space partition boundary (as happens most often in high dimensions) the resulting list is heavily “skewed”
and may not contain many of the close neighbors. Note also that the inverted index is not able to return lists of a pre-specified small length (e.g.
30 points). For the same queries, the candidate lists of at least 30 vectors are requested from the inverted multi-index (right) and the lists containing
31 and 32 words are returned (circled). As even such short candidate lists require visiting several nearest cells in the partition (which can be done effi-
ciently via the multi-sequence algorithm), the resulting vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are
approximately centered at the queries). In high dimensions, the capability to visit many cells that surround the query from different directions trans-

lates into considerably higher accuracy of retrieval and nearest neighbor search.

Similarly to a standard inverted index, each entry of a
multi-index table corresponds to a part of the original vector
space and contains a list of points that fall within that part.
Importantly, we propose a simple and efficient algorithm
that produces a sequence of multi-index entries ordered by
the increasing distance between the given query vector and
the centroid of the corresponding entry. Similarly to stan-
dard inverted indices, concatenating the vector lists for a
certain number of entries that are closest to the query vector
then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction,
inverted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted
indices (Fig. 1). Our experiments demonstrate the advan-
tages resulting from this property, in particular in the con-
text of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the
BIGANN dataset of 1 billion SIFT vectors recently intro-
duced by Jegou et al. [13] as well as on the “Tiny Images”
dataset of 80 million GIST vectors introduced by [9]. We
show that as a result of the “extra-fine” granularity, the can-
didate lists produced by querying multi-indices are more
accurate (have shorter lengths and higher probability of
containing true nearest neighbors (NN)) compared to stan-
dard inverted indices. We also demonstrate that in combi-
nation with a suitable reranking procedure, multi-indices
substantially improve the state-of-the-art approximate

nearest neighbor retrieval performance on the BIGANN
dataset. Finally, we evaluate the new structure for the task
of large scale duplicate image detection.

2 RELATED WORK

The use of inverted indices has a long history in information
retrieval [14]. Their use in computer vision was pioneered
by Sivic and Zisserman [1]. Since then, a large number of
improvements that transfer further ideas from text retrieval
(e.g. [15]), improve the quantization process (e.g. [16]), and
integrate the query process with geometric verification (e.g.
[17]) have been proposed. Many of these improvements can
be used in conjunction with inverted multi-indices in the
same way as with regular inverted indices.

Approximate near(est) neighbor search is a core opera-
tion in AI. ANN-systems based on tree-based indices (e.g.
[11]) as well as on random projections (e.g. [18]) are often
employed. However, the large memory footprint of these
methods limits their use to smaller datasets (up to millions
of vectors). Recently, lossy compression schemes that admit
both compact storage and efficient distance evaluations and
are therefore more suitable for large-scale datasets have
been developed [19], [20]. Towards this end, binary encod-
ing schemes (e.g. [21], [22], [23]) as well as product quanti-
zation [12] have brought down both memory consumption
and distance evaluation time by order(s) of magnitude com-
pared to manipulating uncompressed vectors, to the point

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 17,2023 at 10:29:50 UTC from IEEE Xplore. Restrictions apply.

BABENKO AND LEMPITSKY: THE INVERTED MULTI-INDEX

where exhaustive search can be used to query rather large
datasets (up to many millions of vectors).

The idea of fast distance computation via product quanti-
zation introduced by Jegou et al. [12] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [12]. In fact, the systems pre-
sented by Jegou et al. in [12], [13], [24] use standard inverted
indices and, consequently, have to rerank rather long candi-
date lists when querying very large datasets in order to
achieve high recall. Unlike [12], [13], [24], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-
based reranking [12] in some of our experiments, one can
also employ binary embedding [25] or any other compres-
sion/fast distance computation scheme to rerank lists
returned by a multi-index (or, depending on the applica-
tion, omit the reranking altogether).

Since our initial publication [26] two improvements for
the nearest neighbor search with multi-index have been
suggested. First, Ge et al. [27] have improved the accuracy
of the search by replacing the product quantization with the
optimized product quantization (OPQ) [28], [29]. Secondly,
in Kalantidis and Avrithis [30] and in our report [31], the
idea of local codebooks that describe the distribution of the
points within each cell of a multi-index has been demon-
strated to bring further boost to search accuracy.

In general, this work represents a very substantial exten-
sion of our previous conference paper [26] with an addi-
tional material added from our report [31]. The main
algorithmical novelty compared to [26] is a method that ena-
bles fast reranking of candidate lists during the approximate
nearest neighbor search based on multi-index. The resulting
speed improvement is substantial (especially for short
codes), while keeping the search accuracy exactly the same.
The speed improvement at retrieval time comes at the cost
of simple precomputations and lookup tables of limited size
stored in memory. On top of that, we evaluate the combina-
tion of inverted multi-indices and principal component
analysis (PCA), include a detailed comparison between the
second-order and the fourth-order inverted multi-indices, and
evaluate inverted multi-indeces on the task of near-dupli-
cate detection. Finally, for the sake of completeness, in the
experimental section we evaluate the improvements of the
inverted multi-index-based nearest neighbor search dis-
cussed above.

3 THE INVERTED MULTI-INDEX

The structure of the inverted multi-index. We now explain how
an inverted multi-index is organized. Along the way, we
will compare the analogous parts between inverted multi-
indices and standard inverted indices.

We assume that a large collection D of N M-dimensional
vectors D = {p,,ps,...,Py}, P; € R is given. The con-
struction of a standard inverted index then starts with learn-
ing a codebook W of K M-dimensional vectors
W = {wy,ws,...,wg} via a k-means algorithm. The initial
dataset is then split into K lists Wi, Ws, ..., Wy, where each
list W; contains all vectors that fall in its Voronoi cell in R,
i.e. W; = {p € D|i = argmin; d(p, w;)}. Here, d is a distance
measure in RY. In practice, each list WW; can be represented

1249

in memory as a contiguous array, where each entry may
contain the compressed version of the initial vector (which
is useful for reranking) and typically some metadata associ-
ated with the vector (e.g. the class label or the ID of the
image that the visual descriptor p was sampled from).

Following the product quantization idea [12], the
inverted multi-index is organized around splitting the M
input dimensions into several dimension blocks. The num-
ber of blocks affects the accuracy of retrieval and its speed.
In previous works where PQ was used for compression and
fast distance evaluation, the best trade-off was achieved for
eight or so blocks [12], [13], [24]. In the multi-index case,
however, it is optimal to split dimensions in just two blocks,
at least for the characteristic scales considered in our evalua-
tion and assuming that the accuracy and low query time are
more important than low index construction time. We com-
ment more on the choice of the number of blocks below. For
the time being, to simplify the explanation we discuss how
a multi-index can be built for the case of splitting vectors
into two halves. Where required, we refer to this case as the
second-order inverted multi-index. It will be evident how to
generalize the proposed algorithms to higher-order inverted
multi-indices (which split vectors into more than two
dimension groups).

Let p; = [p! p/] be the decomposition of a vector
p; € RM from the dataset into two halves, where

p! € RY,p? € RY. As in the case of other PQ-based sys-
tems, inverted multi-indices perform better when the cor-
relation between D' = {p}} and D? = {p?} is lower and
the amount of variance within D' and D? are closer to each
other. For SIFT-vectors, splitting them directly into halves
seems to be a near-optimal strategy, while in other cases
one can regroup the dimensions to reduce the correlation
or multiply all vectors by a random orthogonal matrix to
balance the variances between the halves [12], [24].

The PQ codebooks for the inverted multi-index are
obtained via independent k-means clustering of the sets D'
and D? independently, producing the codebooks U =
{uj,uy,...,ux} for the first half and V = {vy,vs,..., v}
for the second half of dimensions." We then perform the
product quantization of the dataset vectors, so that the K?
lists corresponding to all possible pairs of codewords
(w,vj),i=1...K,j=1... K are created. We denote each
of the K? lists as W;;. Each point p = [p' p?] is assigned to
the closest point [u; v,], so that:

Wij={p=I[p' p’| €D|
i = arg mkin dy(p',up) Aj = arg mkin do(p?,vi)} .

1

Note that the “catchment area” of each list W;; is now a Car-
tesian product of the two Voronoi cells in RY spaces. In (1),

the distance measures d; and ds in R% are induced by d, so
that Va,b: d(a,b) = d;(a!,b') + dy(a?,b?). The simplest
and most important case is setting d, d;, and d» to be
squared Euclidean norms in respective spaces, so that the
resulting multi-index can be used to retrieve points with

1. We have deliberately chosen different letters u and v in the nota-
tion of the two sub-codebooks, to emphasize that they are learned sepa-
rately and that w; # [u; v;].

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 17,2023 at 10:29:50 UTC from IEEE Xplore. Restrictions apply.

1250

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.37, NO.6, JUNE 2015

space subdivision via PQ q1 vs. U q2 vs. V [Ua@) Vel (6,5) () +s(5)
Vi X X usg V4 (1,1) 0.6 (0.5+0.1)
L U@ T J VpG) S Uy Vg (2,1) 0.8 (0.7+0.1)

V2 I ug 05 || 1 vyq 01 usvs] (L,2) 25 (0.5+2)

a q?|Vs 2 uy 07 || 2 vy 2 ug vzl (22) 2.7 (0.7+2)

o -1- vy 3 uy 4 3 vy 3 |::> us Vs ggg g? (g-?g)

> uy v , 7 (0.7+
o Vs 4 uy 6 4 vy 6 . u: vi (3,1) 41 E4+oi1;
q_: v product 5 u 38 o vg T multi- Us V3 (3,2) 6 (4+2)
A 6 quantization| 6 Ug 9 6 vqi 11 sequence uz v (1,4) 6.5 (0.5+6)
u; Uy uszuyUsug algorithm 8V 7 e

1 2 3 456 1 23 456 12 3 456 123 456 123 456 123456\
1(0.6/0.8/4.1|6.1/8.1/9.1 0.84.1/6.1/8.1/9.1| |0.6]0:8]4.1/6.1|8.1(9.1| |0.6/0.8|4.1/6.1|8.1|9.1| |0.6/0.8]4.1/6.1(8.1/9.1| |0.6/0.8]4.1/6.1/8.1/9.1| V4
212527/ 6 | 8 |10|11| [2.5[2.7| 6| 8 |10|11| [2.52.7| 6 | 8 [10]11 2.7 6 | 8 |10|11| [2.502.7| 6 | 8 |10|11| [2.5[2.7| 6 | 8 |10|11|V3
303537/ 7| 9 |11]12| [3.5(3.7| 7| 9 |11]12| |3.5[3.7] 7 | 9 |11|12| [38.5[3.7] 7 | 9 |11|12| [3.5[3.7| 7 | 9 |11]12 3.7| 7 | 9 |11]|12| V5
416.5/6.7|10|12|14 (15| |6.56.7|10(12(14|15| |6.56.7/10|12|14|15| |6.5(6.7/10|12|14|15| |6.56.7/10|12|14|15| |6.5/6.7(10|12|14|15|V o
5(7.5(7.7|11|13|15|16| |7.5/7.7|11|13|15|16| |7.57.7[11|13|15|16| |7.5|7.7|11|13|15|16| |7.5/7.7|11|13|15|16| |7.5/7.7|11|13|15|16|Vg
g hishi7[15]17|19]20] husjiir15|17]19]20| [oshez15|17(19]20] hasjiiz|1s|17]19]20| [ushaz[1s]17]|19|20| f1shir/15]17|19]20]v

Uz ug UsUu2U;Ug UzlUgUs Uz U3 Ug Uz UgUsU2UpUg Uz Ug UsU2U3Ug U3 Ug Us U2U7 Ug U3 Ug Us U2 U Ug

OUTPUT: (1,1) > Wayg (2,1) > Wy, (1,2) > W33z (2,2) > Wy3 (1,3) > Wajs

Fig. 2. Top —The overview of the query process within the inverted multi-index. First, the two halves of the query q* and q* are matched w.r.t. sub-
codebooks U/ and V to produce the two sequences of codewords ordered by the distance (denoted r and s) from the respective query half. Then,
those sequences are traversed with the multi-sequence algorithm that outputs the pairs of codewords ordered by the distance from the query. The
lists associated with those pairs are concatenated to produce the answer to the query. Bottom—The first iterations of the multi-sequence algorithm
in this example. Red denotes pairs in the priority queue, blue indicates traversed pairs (the pair traversed at the current iteration is emphasized).
Green numbers correspond to pair indices (i and j), while black symbols give original codewords (u, ;) and v(;). The numbers in entries are the dis-

tances (i) + s(j) = d(q7 [Ua(i) V())-

low Euclidean distance from the query. We briefly discuss
alternative distances below.

Querying the multi-index. Given a query q = [q' q*] € R
and a desired candidate list length 7" < N, an inverted
multi-index allows to generate a list of 7" (or slightly more)
points from D that tend to be close to q with respect to the
distance d. This is achieved via identifying a sufficient num-
ber of codeword pairs [u; v;] that are closest to g in R" and
concatenating their lists WV;;. Finding those [u; v;] is per-
formed in two stages (Fig. 2-top).

On the first stage, q' and q” are independently matched
to corresponding codebooks. Thus, for q' and g” the L near-
est neighbors among U/ and V respectively are identified
(where L < K depends on the specified T). As the size of U
and V is typically not large (thousands of vectors), exhaus-
tive search can be used. Denote with «a(k) the index of the
kth closest neighbor to q' in / (i.e. u,(y) is the nearest neigh-
bor to q' in U, U, (2) is the second closest, etc.). Similarly,
denote with B(k), the index of the kth closest neighbor to g*
in V. Also, denote with (k) and s(k) the distances from q'
and q” to ug(y) and v) respectively, i.e. r(k) = di (q', uy))
and S(k) = dz (q2, Vﬂ(k)).

On the second stage, given the two monotonically
increasing sequences r(1),7(2),...,r(L) and s(1),s(2),...,
s(L), we traverse the set of pairs {(r(i),s(j))|[i=1...L, j=
1...L} in the order of the increasing sum () + s(j) (which
equals d(q, [ug) vg;])). In this way, the centroids
[uyi) vg;)] are visited in the order of increasing distance
from q. The traversal starts from the pair (1, 1) naturally cor-
responding to the cell around the centroid [u,) Vgl
which the query falls into. During the traversal, the lists
Wi p(;) are concatenated, until the length of the answer

exceeds the predefined length T, at which point the tra-
versal stops.

We propose an algorithm to perform such a traversal
(Fig. 2-bottom, Fig. 3). This multi-sequence algorithm is based
around a priority queue of index pairs (¢, j), where the prior-
ity of each pair is defined as —(r(i) + s(j)) = —d(q,
[We(i) Vp()])- The queue is initialized with a single pair (1,1).
At each subsequent step ¢, the pair (4, j;) with top priority
(lowest distance from q) is popped from the queue and con-
sidered traversed (the associated list W,; 4(; is added to the
output list). The pairs (i, + 1, j;) and (i;, j; + 1) are then con-
sidered for the insertion into the priority queue. The pair
(it +1,j¢) is inserted into the queue if its other preceding
pair (i + 1, j; — 1) has also been traversed (or if j; = 1). Simi-
larly, the pair (i, j; + 1) is inserted into the queue if its other
preceding pair (i; — 1,j; + 1) has also been traversed (or if
i; = 1). The idea is that each pair is inserted only once when
both of its preceding pairs are traversed.

The multi-sequence algorithm produces a sequence of
pairs (4, j), whose lists W, ; are accumulated into the query
response. One can prove the correctness of the algorithm:

Corollary 1 (correctness). The multi-sequence algorithm pro-
duces the sequence of pairs in the order of increasing
(1) + s(i) and will eventually visit every pair in {1...L}®
{1...L}.

Proof 1. We prove the corollary 1 in two steps. First, we
prove that the algorithm will visit all cells in the L-by-L
table (completeness—given that long enough candidate
list is requested) and then we prove that it will visit the
cells in the right order (monotonicity). 0

Completeness. We prove the completeness by induction
on the value of sum (i + j) for a fixed value of L. The

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 17,2023 at 10:29:50 UTC from IEEE Xplore. Restrictions apply.

BABENKO AND LEMPITSKY: THE INVERTED MULTI-INDEX

Algorithm 3.1: MULTI-SEQUENCE ALGORITHM()

INPUT : r(:), s(:) % The two input sequences
OUTPUT : out(:) % The sequence of index pairs
% Initialization:

out + 0

traversed (1:length(r), 1:length(s)) < false
pqueue < new PriorityQueue
pqueue.push ((1,1),r(1)+s(1))
% Traversal:
repeat
((4,4),d) < pqueue.pop()
traversed(i, j) + true
out < outU {(7,7)}
if i <length(r) and (j=1 or traversed(i+1,j—1))
then pqueue.push ((i+1,j) ,r(i+1)+s(4))
if j < length(s) and (i=1 or traversed(i—1,j+1))
then pqueue.push ((4, j+1),7(¢)+s(j+1))
until (enough traversed)

Fig. 3. The pseudocode for the multi-sequence algorithm. In our imple-
mentation, the iterations are stopped whenever the total number of ele-
ments within the entries corresponding to the output pairs of indices
exceeds a user-prespecified length. Here, we give the variant of the
multi-sequence algorithm for combining two sequences. The generaliza-
tion to the “higher-order” case (e.g. merging four sequences) is
straightforward.

base of induction, i.e. the case i + j = 2 is trivial as the cell
(1,1) is always traversed at the first step. Assume that all
cells (i,7),7 + j < k will be traversed. Consider a cell (i, j)
with i+ j=Fk+ 1. Both its predecessors (i—1,j) and
(1,7 — 1) will be traversed by the assumption. Then, after
the traversal of the second predecessor the cell (i, 7) will
be pushed into the queue and eventually popped from
the queue (given that long enough candidate list is
requested). Thus the induction step is proved and the
completeness is verified.

Monotonicity. Let us now show that for any two cells
(11,51), (i2,j2) such that (is, jo) was traversed immediately
after (i1,71), the monotinicity holds, ie. 7(i1) + s(j1) <
r(iz) + 5(j2)-

Assume the contrary, ie. 7(i1)+ s(ji) > r(i2) + s(j2)-
This would mean that (is, j») was pushed into the priority
queue after (i1, j;) was traversed (otherwise the algorithm
would have popped (is,j2) from the priority queue first).
However, after the traverse of (i1,j;) algorithm can push
into the queue only either (iy + 1, j1) or (41,71 + 1) (or both).
Asr(i+1) > r(i) and s(i + 1) > s(i), the initial assumption
r(i1) + s(j1) > r(i2) + s(j2) cannot hold for any of those two
cases.

Regarding the efficiency of the algorithm, one can prove
that the queue within the algorithm grows slow enough:

Corollary 2. at the tth step of the algorithm, when t pairs have
been output, the priority queue is no longer than

0.5+ v2t + 0.25.

1251

Proof 2. Let us estimate the minimum number of cells that
the multi-sequence algorithm has to traverse to get a pri-
ority queue of size ¢g. Consider the number of cells tra-
versed in each row (denote them n;). It is easy to see that
a) n; is monotonically non-increasing; b) each row has at
most one cell in the priority queue (for the same reason),
¢) if n; = nj41 than the row 7 + 1 has no cells in the prior-
ity queue. All three statements follows from the fact that
each cell can be added to the queue (or traversed) only
after all of its predecessors, i.e. all cells with both coordi-
nates smaller or equal to a given one, have been
traversed. O

Therefore, to get ¢ cells in the priority queue, there
should be at least ¢ — 1 non-empty rows with total number

_ alg=1)
of traversed cells equals 142+ --- + (¢ — 1) = £5—. There-

fore, @ <'t, where t is the number of steps (= number of

traversed cells). Solving this quadratic inequality gives
the bound.

Inverted index vs. inverted multi-index. Let us now discuss
the relative efficiency of the two indexing structures, given
the same codebook size K. In this situation, the induced
subdivision of the space is very different for the standard
inverted index and for the inverted multi-index (Fig. 1). In
particular, the standard index maintains K lists that corre-
spond to the space subdivision into K cells, while the multi-
index maintains K? lists corresponding to a much finer sub-
division of the space. While the lengths of the cell lists
within the inverted index tend to be somewhat balanced
(due to the nature of the k-means algorithm), the distribu-
tion of list lengths within the multi-index is highly non-uni-
form. In particular, there are lots of empty lists that
correspond to u; and v; that never co-occur together (e.g.
cells in the bottom-right corner in Fig. 1-right). Still, as will
be revealed in the experiments, despite a highly non-uni-
form distribution of list lengths, inverted multi-indices
enjoy a large boost in retrieval accuracy due to higher sam-
pling density.

Furthermore, despite the increase in the subdivision
density, matching a query with codebooks for both struc-
tures requires the same number of operations. Thus, in
the inverted multi-index case one has to compute the K
distances between M-dimensional vectors, while in the
multi-index case 2K distances between M /2-dimensional
vectors are computed (while the number of the scalar
operations is the same, vector instructions on modern
CPUs can make the matching moderately faster in the
inverted index case). Querying the multi-index also
incurs an overhead in computational cost due to the use
of the multi-sequence algorithm. In our experiments, we
however observed (in Section 5) that the overhead was
small compared to the quantization cost even for rather
long list lengths 7'

The use of the inverted multi-index also incurs a memory
overhead, as it has to maintain K? rather than K lists. How-
ever, the joint length of all lists remains the same (as the
number of entries equals the total number of vectors i.e. V).
Therefore, given that all lists are stored contiguously as a
large array, maintaining each list W;; effectively requires
one integer (that contains the starting location of the list
within the large array). Within our experimental setting of

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 17,2023 at 10:29:50 UTC from IEEE Xplore. Restrictions apply.

1252

N =10° and K = 2", this overhead amounts to one byte
per dataset vector (4 bytes*) /N). Such overhead is small
compared to several bytes of meta-data and/or compressed
vector that are typically stored for each instance.

Coming back to higher-order multi-indices, which
split vectors into more than two dimension groups, our
experiments suggest that while they result in much
smaller quantization times (for the same subdivision den-
sities), their memory overheads grow quite rapidly with
K and so does non-uniformity of list lengths and the
numbers of empty cells in the index. This memory ineffi-
ciency limits the usage of such “higher-order” multi-indi-
ces to small values of K, where the accuracy of retrieval
is limited. Overall, in our experiments, second-order
multi-indices proved to be a sweet spot between inverted
indices (low memory overhead, large quantization times
for sufficient subdivision density) and higher-order
multi-indices (high memory overhead, low quantization
time). The use of the latter, however, might be justified
when small pre-processing times are required, as the
time required to product quantize all dataset vectors dur-
ing higher-order multi-index construction is much
smaller (due to lower K).

4 APPROXIMATE NEAREST NEIGHBOR SEARCH
WITH INVERTED MULTI-INDEX

The most important application of the inverted multi-index
is the large-scale approximate nearest neighbor search.
Indeed, as an indexing structure (e.g. a multi-index) return
short lists of vectors that are close to a query vector, one can
rerank the vectors based on some additional information
stored about each vector. Following [12], we consider two
possibilities to encode the information about each vector.

First, we can store a PQ-compressed version of each vec-
tor (we call this variant Multi-Asymmetric Distance Computa-
tion (ADC)). In the case of Multi-ADC, the multi-index is
used to return the candidate lists of PQ-compressed points.
A standard ADC is then used to rerank the returned list by
computing the distances between the query and the
returned compressed representations.

Alternatively, we store a PQ-compressed version of the
residual displacement between the vector x and the closest
centroid [¢} ¢7]. This is analogous to the IVFADC system of
[12], except that the inverted index is replaced with the
inverted multi-index. Thus, the second-order Multi-D-ADC
system is built around the coarse codebooks C!, C? that
define the multi-index structure. In addition, Multi-D-ADC
includes the fine codebooks Ry, ..., Ry, that are used to PQ-
compress the displacements between the dataset points and
the cell centroids. We assume that the codebooks
Ry,.. .,R¥ are used to encode the first half the displace-

ments dimensions, and the codebooks Ru 1 By encode
2

the second half.

In general, for the same number of extra bytes, Multi-
D-ADC leads to higher recall than Multi-ADC, because
residual displacements have smaller magnitudes than the
original points and hence allow less lossy PQ compres-
sion. On the other hand, Multi-ADC is faster than our ini-
tial implementation of Multi-D-ADC [26], since it allows

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.37, NO.6, JUNE 2015

efficient pre-computation of a single look-up table for the
ADC computation. Below, we describe a method that
speeds up the Multi-D-ADC system considerably without
affecting the returned results.

Generally, in the case of the IFVADC system, the reranking
of PQ-compressed candidates is highly efficient. In each vis-
ited cell the displacement of a query from the cell centroid is
calculated and the lookup tables for fast ADC [12] procedure
are then computed, which permit fast distance computations
between the query displacement vector and the displacement
vectors of points stored in that cell. In the case of Multi-D-
ADC, this approach is inefficient since most of the multi-
index cells contain few points and the cost of precomputing
the ADC tables is not justified. Here (and in the report [31]),
we describe a trick that allows to overcome this difficulty.

Consider now the case of the Multi-D-ADC and the
Euclidean distance between query g € R” and a dataset
point = belonging to a cell Wj; with the centroid [c}, ¢7]. Let
the displacement of = from the cell centroid to have the PQ-
code [rq,...,ry]. With such a code z is effectively approxi-

mated by a sum
c }
TR (c?) +1 | (2)

Then the distance from the query to the point is approxi-
mated using (2):

2 ., [€
g~ ~ g (
_ 2 ¢l

3)

As usual, we can precompute the dot-products of the
query subvectors with the codewords both from the coarse
codebooks C', C? and the fine codebooks Ry, ..., Rys. These
displacements are stored in lookup tables and reused in
each cell during the calculation of the terms

(D) ()

M

2
1

Lo S

2
r

—
=
—

TM

=
=

=
=
=

Given that dot-products are precomputed, for each dataset
point the calculation of these terms can be done in O(M)
operations.
In addition, we note that the terms
, 2
1
2 |+
€
Tn
are query-independent. They can then be precomputed in

advance and also stored within the lookup tables. Due to
the nice properties of PQ this term can be further simplified:

1

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 17,2023 at 10:29:50 UTC from IEEE Xplore. Restrictions apply.

BABENKO AND LEMPITSKY: THE INVERTED MULTI-INDEX

2 2

cl . ‘
R =lcd+| : +||¢ +
]

M 2
Ui
™ M

M
(c},rr) +2 Z (c?n“k).

=1 _M
k k=341

<
=<

NS
SN

y M
= [P+ + lit+2
k=1

4)

Thus, it is enough to precompute and store the squared
norms of the codewords and the dot-products of the coarse-
level and the fine-level codewords. Given these values the
calculation of the query-independent square term can be
also performed in O(M) operations. As a result, all terms
within the distance evaluation expression (3) can be calcu-
lated in O(M) operations.

5 EXPERIMENTS

The goal of our experiments is to evaluate the inverted
multi-index structure and, in particular, its applicability to
the task of the approximate nearest neighbor search via the
Multi-D-ADC system. Our experiments thus compare the
performance of the inverted multi-index with the standard
inverted index. We also compare different variants of the
inverted multi-index, including the second- and the fourth-
order multi-indices, the combination of the inverted multi-
index with the PCA compression, and in addition evaluate
the recent improvements of the Multi-D-ADC system sug-
gested by us and by other researchers.

Below, we group the experiments according to the fol-
lowing three data processing tasks:

1) Indexing. Here, we compare different structures that
can index large datasets of vectors. The structures
are compared in their ability to return candidate lists
with high recall in a small amount of time, when
given a nearest neighbor query.

2) Fast approximate nearest neighbor search. Here we com-
pare the performance of joint systems that include
an indexing structure and a state-of-the-art rerank-
ing procedure (IVFADC, Multi-D-ADC, and the
improved versions of Multi-D-ADC).

3) Detection of near-duplicate images. While the first two
groups of experiments focus on the nearest-neighbor
search w.r.t. the Euclidean metric, in the third group
we evaluate the ability to retrieve near duplicates
based on holistic GIST descriptors (which is corre-
lated, but not identical to Euclidean nearest neighbor
search).

Through the experiments we use the following datasets:

BIGANN. This dataset used in the majority of our experi-
ments was introduced in [13] and contains 1 billion of 128-
dimensional SIFT descriptors [32] extracted from natural
images. The ground truth (true Euclidean nearest neigh-
bors) for a hold-out set of 10,000 queries is provided with
the dataset.

80 million tiny images. This dataset contains 384-dimen-
sional GIST [33] descriptors corresponding to 80 million Tiny
Images [9]. For this set, we picked a subset of 100 vectors and
computed their Euclidean nearest neighbors within the rest of

1253

the dataset through exhaustive search thus obtaining the
query set (which was excluded from the original dataset).

Augmented copydays. The Copydays dataset was pro-
posed in [34] for evaluating the robustness of image descrip-
tors against artificial image transformations. The dataset
contains 157 original images and their “copies” (results of
JPEG, cropping and strong attacks). For each of original
images we took four most similar images (10 and 20 percent
crops and 75 and 50 JPEG quality factors) and considered
them as ground truth duplicates of the original image. We
calculated GIST-descriptors [33] of these 157 x (1 +4) =785
images and added to them 80 million Tiny images GISTs as
distractors in order to emulate a large-scale near-duplicate
search problem.

5.1 Indexing Performance

In these experiments we study the quality of candidate lists
produced by the multi-index. We report different measure-
ments related to list lengths, timings, and the recall, which is
defined as the probability of finding the first nearest neigh-
bor of a query in a list returned by a certain system. This
probability is always evaluated by averaging the rate of suc-
cess (true nearest neighbor is on the list) over the available
query set. In practice, the performance of retrieving other
nearest neighbors (beyond the first one) is often important,
however, this performance is highly correlated with the
ability to retrieve the first nearest neighbor, and is therefore
omitted from this evaluation. All timings were obtained on
a single core of Intel Xeon 2.40 GHz CPU (using BLAS
instructions in the single-thread mode).

5.1.1 Candidate List Quality

To evaluate the quality of candidate lists we compare the
recall of a second-order inverted multi-index and an
inverted index for the same codebook size K. We perform
this comparison for K = 2! for the BIGANN and 80 million
dataset and, additionally, for a smaller K = 212 for the
BIGANN dataset. For a set of predefined list lengths 7'
(powers of two) and for each query, we traverse both data
structures concatenating the lists stored in the entries. The
traversal stops one step before the concatenated list length
exceeds the predefined length 7' Fig. 4 plots the recall of
such lists versus the length 7' (to which we refer as
recall@T’). In general, for a fixed K, the advantage of multi-
indices over indices is very significant for the whole range
of list lengths. For the SIFT1B dataset we also present a per-
formance of an inverted index with significantly larger
codebook K = 2'. While for such K the performance of the
inverted index improves considerably, it is still uniformly
worse for all list lengths than the performance of the
inverted multi-index for K = 2'2.

We then evaluate an additional baseline. As kd-trees [11]
have emerged as a popular tool for working with very large
codebooks, we took an even larger codebook (2% code-
words) and used a kd-tree (v1_feat [35] implementation)
to match the queries and the dataset vectors to this code-
book (thus replacing the exhaustive search within the
inverted index quantization with the fast approximate
search). For a fair comparison, we limited the number of
vector distance evaluations within the kd-tree to the

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 17,2023 at 10:29:50 UTC from IEEE Xplore. Restrictions apply.

1254

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.37, NO.6, JUNE 2015

]
0.9l ™ Mutti-index K=2'4

[- Index+kd-tree K=2"4
0.8]| @~ |ndex K=2"*

| 0.9/ ~® Multi-index
08 =0—Index+kd-tree

0.7[|-B-Multi~index K=2'? K 0.7 ~@- Index
0.6l "¢~ Index+kd—tree K=2'2 K 0.6
® |l-e-index k=22 o 05
8 %9 o Index k2'® ;
& 0.4} . 0.4
0.31 0.3
0.2} s 0.2
0.1f 0'(1)
05 : 2 RS E—T - 2 5 = > 1 3 5 7 9 1113 15 17 19 21 23

log,(list length T)

1 billion SIFTs, K = 2'* (solid), K = 2'? (dashed), K = 2'6 (dotted)

Iogz(list length T)
80 million GISTs, K = 2

Fig. 4. Recall as a function of the candidate list length. For the same codebook size K, we compare three systems with similar retrieval and construc-
tion complexities: an inverted index with K codewords, an inverted index with larger codebook (2'* codewords) sped up by a kd-tree search with a
maximum of K comparisons, a second-order inverted multi-index with codebooks having K codewords. For billion-scale dataset we also provide
results for an inverted index with K = 2! codewords which requires more runtime for quantization. In all experiments, multi-indices returned shorter

lists with higher recall.

respective K (either 2! or 2'%). As can be seen in Fig. 4, the

new baseline is more competitive in the low recall area than
the standard inverted index with the same values of K. This
version, however, performs worse than the inverted index
when high recall is needed. Overall, the recall@I" of both
baselines was uniformly worse than the recall@l’ of the
inverted multi-indices in our experiments. Both, kd-trees
and multi-indices incur some computational overhead over
inverted indices (tree search and multi-sequence algorithm,
respectively) and we now address the question how big this
overhead is for the inverted multi-indices.

5.1.2 Retrieval Speed

We give the timings for the second-order inverted multi-
indices (K = 2%, K =2') on the BIGANN dataset as a
function of the requested list length in Fig. 5. The multi-
index retrieval time essentially remains flat until the list
length grows into many thousands, which means that the
computational cost of the multi-sequence algorithm remains
small compared to the quantization. We also give the timing
curves for inverted indices with K = 2'2, 214, Their approxi-
mately two-fold speed advantage over the second-order
indices (for the same K) stems most likely from the

128 — 2 B
64 H —*= Multi-index K=2
32 [{~® Index K=2'4
16 H =™~ Multi-index K=2"2
B 8p"®"IndexK=2"
8 4H—*Multi-index-4 K=27
g 2
E 1l == O - = = W= O -0 = = @ 0= -0 -0 - @ Lo’ b
[0} Y
E 04¢ o .0-0-0-0-0--0-0-0-0-0-0-0" 1
'_
0.2+ E
01p b
004 o 0 0 0 1
0.02 MR AR f L L L L L

0 2 4 6 8 10 12 14 16 18 20
log,(list length T)

Fig. 5. Time (in milliseconds) required to retrieve a list of a particular
length from the inverted multi-index and index on the BIGANN dataset.

particular efficiency of vector instructions (BLAS library) on
our CPU. This efficiency makes matching against codebooks
faster in the inverted index case despite the same number of
scalar operations.

Put together, Figs. 4 and 5 demonstrate the advantage of
the second-order inverted multi-index over the standard
inverted index. Thus, the multi-index with K = 2! pro-
vides much higher recall and is faster to query than the
inverted index with K = 2! even when the BLAS instruc-
tions are used. In Fig. 5, we also provide timings for the
fourth-order multi-index and small K. Here, querying for
short list lengths is much faster, however the overhead from
the multi-sequence algorithm kicks in at shorter lengths
(hundreds) exhibiting the main weakness of higher-order
inverted multi-indices. We perform more comparisons
involving the fourth-order multi-index below.

5.1.3 Multi-Index + PCA

As discussed above, the computational bottleneck of the
inverted multi-index is the computation of distances
between the query vector and the codewords. The multi-
index allows to reduce the size of vocabularies but the quan-
tization still remains linear in the space dimensionality M. It
is therefore natural desire to combine the multi-index with
dimensionality reduction, e.g. with principal component
analysis, which is the most popular dimensionality reduc-
tion method. Below, we describe the experiments conducted
with the BIGANN dataset, the second-order multi-index
with K =2 and the four-fold dimensionality reduction
that replaces 128-dimensional SIFTs with 32-dimensional
vectors. Our experiments with other output dimensional-
ities lead to similar results.

It turned out that there are two ways to combine PCA
with the inverted multi-index, which lead to quite different
efficiency of such combination:

Naive approach. This is the most obvious strategy. We first
apply PCA to initial 128-dimensional vectors, truncating the
top 32 principal components. To balance the variance, we
multiply the resulting vectors by a random rotation matrix,
and then build the multi-index on the resulting vectors.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 17,2023 at 10:29:50 UTC from IEEE Xplore. Restrictions apply.

BABENKO AND LEMPITSKY: THE INVERTED MULTI-INDEX

1

1255

—8- Multi—index K=2"*

0 Index+kd-tree K=2'*

0.8} =@ Index K=2'*

- B - Multi-index + PCA-naive K=2"*

‘0 Multi-index + PCA-PQ-aware K=2'/

0.9

0.7

— 0.6

T 05

o

jo}

T o4
0.3
0.2

0.1

3 5 7 9 11

13
log,(list length T)

15 17 19 21 23

Fig. 6. Recall as a function of the candidate list length as in Fig. 4 with added curves for different PCA strategies. Even with lossy PCA compression,
the quality of candidate lists from multi-indices is higher than from the baseline systems. We also note that the PQ-aware strategy is significantly bet-

ter than naive strategy to combine PCA and inverted multi-indices.

PQ-aware approach. More efficient strategy performs PCA
while taking the splitting of the dimensions into account.
Thus, two independent PCA compressions are applied to
64-dimensional halves of initial vectors. The top 16 principal
components from each half are retained. The resulting
16 dimensional vectors are multiplied by a random rotation
matrix, and the inverted multi-index is built on the concate-
nations of the pairs of the resulting 16-dimensional vectors.

The indexing performance for both strategies are pre-
sented in Fig. 6 in the form of recall@T curves. As one could
expect the recall drop is smaller with the PQ-aware strategy
because process of forming compressed vectors encourages
independence between halves. In fact, the drop in the recall
for the PCA-PQ-aware strategy is quite small, perhaps neg-
ligible for many applications, which means that PCA com-
pression does not affect the quality of candidate lists
returned by the second-order multi-index.

5.2 Approximate Nearest Neighbor Search

The goal of these experiments is to evaluate the perfor-
mance of the Multi-ADC and the Multi-D-ADC systems
(built on top of the second-order inverted multi-index).

0.9 || = Recal@T'=10000
0.8 [l = Recal@T =1000
0.7 || —*= Recall@T =100
|~ Recal@T =10
=" Recal @T =1

(6]
L 0.4Ff

0 2 4 6 8 10 12 14 16 18 20
Iogz(list length T)

Fig. 7. Recall@T™* (7% =1 to 10,000) of the Multi-ADC system (storing
m = 8 extra bytes per vector for reranking) for the BIGANN dataset. The
curves correspond to the Multi-ADC system that reranks a candidate list
of a certain length 7' (z-axis) returned by the second-order multi-index
(K =2, while the flat dashed lines corresponds to the system that
reranks the entire dataset. After reranking a tiny part of the billion-size
dataset, Multi-ADC is able to match the performance of the exhaustive
search-based system.

52.1 Multi-ADC

In the first experiment, we evaluate the Multi-ADC system
with m = 8 extra bytes per vector (each vector is split into
eight dimension chunks and the PQ vocabularies of size 256
are used). Fig. 7 then gives recall@T™ for 7™ = 1,10, 100,
1,000, 10,000 (different curves) on the BIGANN dataset as a
function of the original candidate list length 7" returned by
the inverted multi-index. As a baseline, we give the perfor-
mance of the ADC system of [12] that essentially reranks the
entire dataset (T' = 1 billion), which takes several seconds
per query. Fig. 7 shows that, depending on 7%, it is sufficient
to query only few hundred to few tens of thousand (i.e. a tiny
fraction of the entire billion-size dataset) to match the perfor-
mance of a system that reranks the entire dataset. At this
point, the shortcomings of lossy compression within ADC
seem to supersede (on average) whatever retrieval errors are
made within the inverted multi-index. Curiously, the curves
for Multi-ADC actually rise above the performance of full
reranking before converging to it. We believe that this effect
can have the following explanation. Because the PQ encod-
ing is lossy, some “nasty” vectors are considered to be closer
than the true nearest neighbor after reranking. In some cases,
as T grows, the true nearest neighbor first enters the top 7*
short list but then “sinks” out of it, as more and more of such
“nasty” vectors enter the list of 7' candidate points.

5.2.2 Multi-D-ADC vs IVFADC

In this set of experiments, we compare the performance
(recall@T™" and timings) of the Multi-D-ADC system for
T* =1,10,100, T = 10,000, 30,000, 100,000, and the number
of extra bytes m = 8,16. This performance is summarized in
Table 1. For the Tiny Images dataset, we visualize few quali-
tative results of retrieval with Multi-D-ADC in Fig. 8. For
the BIGANN dataset, we give the recall and timings for our
own re-implementation of the IVFADC system closely fol-
lowing the description in [12], [13]. We also reproduce the
performance for the IVFADC system (state-of-the-art for
m = 8 extra bytes) and for IVFADC+R system (state-of-the-
art for m = 16 extra bytes) from [13] (the timings are thus
computed on a different CPU).

Overall, it can be observed that for the same level of com-
pression, the use of the inverted multi-indices gives Multi-
D-ADC a substantial speed advantage over IVFADC(+R).

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 17,2023 at 10:29:50 UTC from IEEE Xplore. Restrictions apply.

1256

TABLE 1

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.37, NO.6, JUNE 2015

The Performance (Recall for the Top-1, Top-10, and Top-100 Matches After Reranking + Time in Milliseconds) of the Multi-D-ADC
System (Based on the Second-Order Multi-Index with K=2'*) for Different Datasets, Different Compression Levels

System Number of cells List len.T’ R@1 R@10 R@100 Time(ms) Memory(Gb)
BIGANN, 1 billion SIFTs, 8 bytes per vector
IVFADC [13] 213 8 n’ulhon 0'112(().()88) 0.343(0‘372) 0.728(0.733) 155(7_1) 12
IVFADC [13] 216 600000 0.124 0.414 0.772 25 12
Multi-D-ADC 24 old 10000 0.153 0.473 0.707 2 13
Multi-D-ADC 214 x ol 30000 0.161 0.506 0.813 4 13
Multi-D-ADC 214 x o4 100000 0.162 0.515 0.854 11 13
BIGANN, 1 billion SIFTs, 16 bytes per vector
IVFADC+R([13] 213 8 million (0.262) (0.701) (0.962) (116*) 20
IVFADCI13] 216 600000 0.311 0.750 0.923 28 20
Multi-D-ADC 214 x o4 10000 0.303 0.672 0.742 2 21
Multi-D-ADC 211 % oM 30000 0.325 0.762 0.883 5 21
Multi-D-ADC 24 x ol4 100000 0.332 0.799 0.959 16 21
Tiny Images, 80 million GISTs, 8 bytes per vector
Multi-D-ADC 214 x ol 10000 0.317 0.455 0.604 3 <1
Multi-D-ADC 214 x oM 30000 0.317 0.485 0.673 4 <1
Multi-D-ADC 214 x 2l4 100000 0.317 0.485 0.673 11 <1
Tiny Images, 80 million GISTs, 16 bytes per vector
Multi-D-ADC 2 x oM 10000 0.317 0.544 0.653 3 <1
Multi-D-ADC 214 x oM 30000 0.326 0.574 0.733 5 <1
Multi-D-ADC oM x ol 100000 0.327 0.584 0.852 17 <1

We also give the performance of the IVFADC and IVFADC+R (our reimplementation for IVFADC as well as numbers reproduced from [13] in brackets—the

timings are not directly comparable in the latter case).

This is achieved because Multi-D-ADC has to rerank much
shorter candidate lists (tens of thousands vs. hundreds of
thousand) to achieve similar or better recall values com-
pared to IVFADC(+R). The memory overhead of Multi-
D-ADC compared to IVFADC(+R) is about 8 percent
(~13 GB vs. ~12 GB) for m =8 and about 5 percent
(~21 GB vs. ~20 GB) for m = 16 (all numbers include 4 GB
that are required to store point IDs).

Number of cells in IVFADC. As a baseline we choose
IVFADC with K =2 coarse cells. In general, larger

Yrrrs .l
'?'7'""3 _'i"ﬂ:l

i
§

Fig. 8. Retrieval Examples on the Tiny Images Dataset (the Images
Associated with GIST Vectors are Shown)In each of the three row pairs,
the left-most images correspond to the query, the top row corresponds
to Euclidean nearest neighbors found by exhaustive search, the bottom
row are the top matches returned by the Multi-D-ADC system (K = 24,
m = 16 extra bytes). Empirically, for most examples, we observed that
the top matches returned by a Multi-D-ADC are similar in terms of
semantic similarity to the exhaustive search on uncompressed vectors
(top two rows) with few exceptions (bottom row).

[0 2 2

codebooks would provide better short-lists (due to finer
space partition) and more precise reranking (as the dis-
placements encoded by the fine codebooks within Multi-D-
ADC have smaller magnitudes). But the usage of larger
codebooks in the IVFADC results in slower query quantiza-
tion. Thus, the quantization of a 128-dimensional SIFT with
K = 2! takes about 3 — 4 milliseconds in our experiments,
and for the larger codebooks (K > 2'6) the quantization
alone is slower then the overall time spent on quantization
and reranking within Multi-D-ADC (see the typical timings
in Table 1). While one possible solution could be to use
approximate quantization, for example, via kd-trees, Fig. 4
shows that for high levels of recall exact quantization with
smaller codebooks should be preferred. For values of recall
higher than 0.9 exact quantization with K = 2!° provides
better short-lists than approximate quantization with
K =2,

The second disadvantage of having very large codebook
sizes K, is the amount of time spent on building the index.
Since during the index construction, all time is spent on
quantization and there is no reranking process involved,
the time spent is almost linear in K (a sublinearity is intro-
duced because of the BLAS instructions, however in our
experiments, this sublinearity is rather small once K
becomes large). Hence, building a multi-index of a large
dataset is invariably faster than building a standard
inverted index with a similar recall.

5.2.3 Second-Order vs Fourth-Order Multi-Index.

We also compare the performance of the second-order
multi-index and the fourth-order multi-index with the same

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 17,2023 at 10:29:50 UTC from IEEE Xplore. Restrictions apply.

BABENKO AND LEMPITSKY: THE INVERTED MULTI-INDEX

TABLE 2
The Performance of the Multi-D-ADC and Multi-4-D-ADC
Systems with the Same Number of Effective Codewords
(the Second-Order Multi-Index with K = 2'* and the
Fourth-Order Multi-Index with K = 27 are Used for Indexing)
for Different Datasets

System Re@1 R@10 R@100 Time(ms)
BIGANN, 1 billion SIFTs, 8 bytes per vector
Multi-D-ADC 0.153 0.473 0.707 2
Multi-4-D-ADC 0.093 0.276 0.407 1
BIGANN, 1 billion SIFTs, 16 bytes per vector
Multi-D-ADC 0.303 0.672 0.742 2
Multi-4-D-ADC 0.191 0.391 0.427 1
Tiny Images, 80 million GISTs, 8 bytes per vector
Multi-D-ADC 0.317 0.455 0.604 3
Multi-4-D-ADC 0.247 0.426 0.495 1
Tiny Images, 80 million GISTs, 16 bytes per vector
Multi-D-ADC 0.317 0.544 0.653 3
Multi-4-D-ADC 0.307 0.475 0.523 1

In all experiments Multi-4-D-ADC system produces shortlist of given length
(10,000) faster because of fast quantization. But the quality of the Multi-4-D-
ADC shortlist is considerably worse than the quality of the Multi-D-ADC
shortlist. This difference translates into the drop of the recall after the rerank-
ing is performed.

number of effective codewords. The results are summarized
in Table 2. As one can see the Multi-4-D-ADC system (based
on the fourth-order inverted multi-index) produces short
list of candidates faster than the Multi-D-ADC system
(based on the second-order inverted multi-index) but the
recall is significantly lower. The reason is the effective code-
words in the Multi-D-ADC and the Multi-4-D-ADC systems
are produced under the assumption of independent halves
and quarters of initial points respectively. Obviously the
assumption of independent quarters is stronger. As a result,
the effective codewords in the Multi-4-D-ADC system
describe the structure of initial point space worse, which
causes the drop in the recall. Moreover the timing advan-
tage of the Multi-4-D-ADC is not large, which probably sug-
gests that Multi-D-ADC system would be a preferred choice
for nearest neighbor search in most cases. Below, we also
compare the second and the fourth-order multi-indices for
the near-duplicate detection.

5.2.4 Multi-D-ADC + PCA

In this set of experiments we combine the Multi-D-ADC sys-
tem and PCA, while using the naive and the PQ-aware strat-
egies (see Section 5.1.3). As before, we use the BIGANN
dataset and consider four-fold PCA dimensionality reduc-
tion to 32 dimensions. In Section 5.1.3 lossy PCA compres-
sion affected only indexing quality. In this experiment, the
PCA compression also affects the reranking quality, as the
additional bytes within Multi-D-ADC encode lossy-com-
pressed displacement vectors. The results for both PCA
strategies are presented in Table 3. As one could expect, the
speedup is the same for both approaches. Fig. 6 suggests
that the PCA compression does not affect indexing quality
by much in the PQ-aware case, which means that closest
“coarse” cells of multi-index can be found based only on

1257
TABLE 3
The Performance of Different Strategies to Combine
the Second-Order Multi-Index and the PCA-Based
Four-Fold Compression
System R@1 R@10 R@100 Time(ms)
BIGANN, 1 billion SIFTs, 8 bytes per vector

Original points 0.153 0.473 0.707 2

PCA-naive 0.116 0.348 0.525 1

PCA-PQ-aware 0.116 0.387 0.645 1

The speedup is the same for both strategies but the recall of the PQ-aware strat-
egy is higher, since this strategy encourages independence between subvectors
thus improving the perfomance of the multi-index.

main principal components of a query. Unfortunately,
Table 3 shows a serious drop in the recall after reranking
even for the PQ-aware strategy. This suggests that minor
components truncated in the PCA compression are neces-
sary for the accurate “fine reranking”.

5.2.5 Improved Versions of Multi-D-ADC

Since the initial publication [26] two improvements for
the Multi-D-ADC system have been suggested. First, Ge
et al. [27] have improved the accuracy of the system by
replacing the product quantization with the optimized
product quantization [28], [29] for both indexing and
compression (i.e. both at the coarse level and at the fine
level). In a nutshell, OPQ is an extension of PQ which
finds a data-specific orthogonal transformation which
makes product subspaces less correlated. For some kinds
of data a preprocessing with such a transformation results
in significantly higher performance. The resulting ANN
search system (OMulti-D-OADC) improves the accuracy
of Multi-D-ADC considerably.

Second, in Kalantidis and Avrithis [30] and indepen-
dently in our report [31], it was suggested that in addition
to using the optimized product quantization, a separate i.e.
local second-level (fine) codebook can be learned for each
coarse-level codeword in order to encode the displacements
of vectors that belong to multi-index cells that share this
codeword. Here, we refer to this system as OMulti-D-
OADC-Local.

Table 4 demonstrates the recall levels achieved by
OMulti-D-OADC and OMulti-D-OADC-Local systems for
the billion-scale SIFT1B dataset. The OMulti-D-OADC-Local
system achieves significantly higher recall and provides
current state-of-the-art for this dataset. While the improve-
ment in accuracy from the use of the local codebooks is sub-
stantial, we notice that the use of local codebooks precludes
the speed optimization we discuss in Section 4, which
results in increased runtimes. Also, the space required for
storing local codebooks might be considerable (2 Gb in our
settings). The IVFADC system also allows to use the OPQ at
the fine level for compression. We refer to this modification
as IVFOADC and present its performance in Table 4
for comparison.

Importantly, the gap between IVFADC and Multi-
D-ADC remains about the same, once rotation optimization
is brought in. The use of local codebooks within OMulti-
D-OADC-Local further increases this gap (as one would

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 17,2023 at 10:29:50 UTC from IEEE Xplore. Restrictions apply.

1258

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.37, NO.6, JUNE 2015

TABLE 4
The Results for (Our Implementations of) the Improved Versions of the Multi-D-ADC System
System Number of cells l R@1 R@10 R@100 Time(ms) Memory(Gb)

BIGANN, 1 billion SIFTs, 8 bytes per vector
IVFOADC 216 600000 0.138 0.451 0.810 25 12
OMulti-D-OADC [27] 24 5 ol 10000 0.180 0.518 0.747 2 13
OMulti-D-OADC [27] 214 5 oM 30000 0.184 0.548 0.848 4 13
OMulti-D-OADC [27] 214 x o4 100000 0.186 0.559 0.892 11 13
OMulti-D-OADC-Local [30], [31] 214 oM 10000 0.268 0.644 0.776 6 15
OMulti-D-OADC-Local [30], [31] 214 5 ol4 30000 0.280 0.704 0.894 16 15
OMulti-D-OADC-Local [30], [31] 21 oM 100000 0.286 0.729 0.952 50 15

BIGANN, 1 billion SIFTs, 16 bytes per vector
IVFOADC 216 600000 0.315 0.764 0.955 28 20
OMulti-D-OADC [27] 214 x o4 10000 0.339 0.704 0.769 2 21
OMulti-D-OADC [27] oM x 214 30000 0.360 0.792 0.901) 21
OMulti-D-OADC [27] 24 x 914 100000 0.367 0.834 0.969 16 21
OMulti-D-OADC-Local [30], [31] 214 x ol 10000 0.421 0.755 0.782 7 23
OMulti-D-OADC-Local [30], [31] 214 oM 30000 0.454 0.862 0.908 19 23
OMulti-D-OADC-Local [30], [31] 214 oM 100000 0.467 0.914 0.976 66 23

OMulti-D-OADC proposed by Ge et al. [27] replaces product quantization with the optimized product quantization. OMulti-D-OADC-Local system proposed
in [30], [31] further increases the accuracy (at the cost of extra time and memory) through the use of local codebooks in each coarse cell. The IVFOADC is a
modification of the IVFADC which uses the OPQ for database points compression.

expect). It is certainly possible to use local codebooks with
IVFOADC, however the memory required to store local
codebooks would grow significantly (e.g. 8 Gb for K = 216).

5.3 Near-Duplicate Detection

We also apply the inverted multi-index to the problem of
large-scale duplicate detection [36], [37], [38]. In these
experiments we used the GIST-descriptors of Copydays
[34] merged with the GIST descriptors of 80 million Tiny
Images [9] thus having a dataset with known subsets of
near duplicates. We built the second-order (K = 2'*) and
the fourth-order (K =27) multi-indices on this dataset
and use descriptors of the original Copydays images as
queries to these multi-indices. The main measure of near-
duplicate detection quality we take the recall@T', which in
this case means the percentage of groundtruth near-dupli-
cates in the candidate lists of length 7' returned by a

1
=i~ Second-order
Fourth—order
O.8*+
60.6—
T
[&]
L 04r
0.2r1
O 1 1 1 1 1 1 1 1
1 3 5 7 9 11 13 15 17 19
log,,(T)

Fig. 9. Near-duplicate retrieval recall@T of the second- and the
fourth-order multi-indices as a function of the candidate list length.
For all reasonable lengths the second-order multi-index produces lists
with higher recall.

multi-index, averaged over all queries. The results pre-
sented on Figs. 9 and 10 are consistent with the relative
performance of the two indices for nearest neighbor
search (Table 2).

Thus, as shown in Fig. 10, the fourth-order system pro-
duces a candidate list with a given recall faster. However,
as can be seen from Fig. 9 for any recall level, candidate
lists produced by the second order multi-index is signifi-
cantly shorter. Overall, as in most systems the returned
candidate lists are likely to be reranked/verified in a cer-
tain way (e.g. by comparing some hash values between
the query image and the indexed images), the system
based on the second-order multi-index is likely to be
faster for any certain level of desired recall (after the veri-
fication/reranking time is factored in).

1

=~ Second-order
=0~ Fourth—order
0.8
= 0.6r
®
©
[&]
[0)
o 0.4r
0.2F

2 4 10 20 40 100200400 1000
time (ms)

0 0.1 0204 A1

Fig. 10. Near-duplicate retrieval recall@T of the second- and the fourth-
order multi-indices as a function of time. Because of faster quantization
the fourth-order multi-index traverses the cells closest to queries and
attains moderate recall values faster. For high recall values the second-
order multi-index is preferable: it gains high recall faster because its tra-
versal procedure better concentrates on the parts of space around the
query (cf. Fig. 9).

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 17,2023 at 10:29:50 UTC from IEEE Xplore. Restrictions apply.

BABENKO AND LEMPITSKY: THE INVERTED MULTI-INDEX

6 DiISCUSSION

We have introduced the inverted multi-index, which is a
generalization of a standard inverted index for the large-
scale retrieval in the datasets of high-dimensional vectors.
In our evaluation, second-order multi-indices significantly
outperformed standard inverted indices in terms of the
accuracy of the returned candidate lists given the same
runtime budget. This advantage over the inverted indices,
also translates to the complete systems for approximate
nearest neighbor search that combine candidate list gen-
eration with reranking. Here, the fact that the inverted
multi-index can generate much shorter candidate lists to
achieve the same level of recall, allows to query billion-
scale datasets in a few seconds.

We have also compared the second-order and the fourth-
order inverted multi-indices for the tasks of nearest neigh-
bor search and duplicate detection and found out that the
second order multi-index would be a better choice in most
situations. Since the standard inverted index can be
regarded as a first-order inverted multi-index, we believe
that the second order might be a sweet spot. One important
consideration that however may force to prefer the fourth-
order multi-index over the second-order multi-index is the
index construction time (which for simplicity was omitted
from our experimental evaluation). Indeed, the multi-index
construction is likely to have a time bottleneck at the quanti-
zation stage (assuming that the extra information such as
PQ compression is fast to compute). As the quantization
time would be dramatically (at least an order of magnitude)
smaller for the fourth-order multi-index, it can be preferred
whenever index construction time is important.

We have also looked into the combination of the inverted
multi-index and the PCA dimensionality reduction, which
allows to speedup search without significant drop in the
recall of the returned candidate lists, as long as PCA is
applied in a smart way that takes into account the split into
dimension group.

Similarly to other works that rely on the product quanti-
zation, the efficiency of the inverted multi-index increases
as the correlation between the dimension groups that the
vectors are split into decreases. As shown above, the corre-
lation between the halves of the SIFT or GIST vectors is low
enough for the inverted multi-index to perform well. Gener-
ally, the input vectors can be transformed by the transform
that decreases the correlation between the parts of the vec-
tor. Finding such transformation was the subject of the
recent work of Ge et al. [28], and their experiments suggest
that the performance of the inverted multi-indices can be
improved as a result of such transformation. Thus, they
were able to improve our results on the BIGANN dataset
through the use of such transformation (while leaving the
use of the multi-index unchanged otherwise). Here, we
evaluate the suggested improvement along with the idea of
local codebooks [30], [31] and confirm that they can substan-
tially improve the accuracy of the Multi-D-ADC system
built on top of the inverted multi-index.

Apart from their use within the nearest neighbor search
or duplicate detection systems, multi-indices can be also
used within retrieval systems that combine the candidate
lists returned for multiple descriptors extracted from the

1259

same query image [1]. There, replacing candidate lists corre-
sponding to a single codeword with something closer to
nearest neighbor search has been shown to improve the
accuracy significantly albeit at a considerable computational
cost (c.f. [39], [40]). Furthermore, it is straightforward to
replace the (square of the) Euclidean distance within the
multi-index with any other additive distance measure or
kernel; it will thus be interesting to evaluate inverted multi-
indices within large-scale machine learning systems, in par-
ticular those utilizing exemplar SVMs [41].

ACKNOWLEDGMENTS

The authors would like to thank two CVPR’12 reviewers for
their exceptionally useful reviews.

REFERENCES

[1] J. Sivic and A. Zisserman, “Video Google: A text retrieval
approach to object matching in videos,” in Proc. 9th IEEE Int. Conf.
Comput. Vis., 2003, pp. 1470-1477.

[2] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2007, pp. 1-8.

[3] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-
neighbor based image classification,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2008, pp. 1-8.

[4]]. Deng, A. C. Berg, K. Li, and F.-F. Li, “What does classifying
more than 10,000 image categories tell us?” in Proc. 11th Eur. Conf.
Comput. Vis., 2010, pp. 71-84.

[5] T. Malisiewicz and A. A. Efros, “Beyond categories: The visual
memex model for reasoning about object relationships,” in Proc.
Adv. Neural Inf. Process. Syst., 2009, pp. 1222-1230.

[6] J.Haysand A. A. Efros, “Scene completion using millions of pho-
tographs,” ACM Trans. Graph., vol. 26, no. 3, p. 4, 2007.

[7] Google Goggles. [Online]. Available: http://www.google.
com/mobile/goggles, 2010.

[8] H. Lejsek, B. T. Jonsson, and L. Amsaleg, “NV-Tree: Nearest
neighbors at the billion scale,” in Proc. 1st ACM Int. Conf. Multime-
dia Retrieval, 2011, p. 54.

[91 A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny

images: A large data set for nonparametric object and scene recog-

nition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11,

pp- 1958-1970, Nov. 2008.

D. Nistér and H. Stewénius, “Scalable recognition with a vocabu-

lary tree,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2006,

pp- 2161-2168

J. L. Bentley, “Multidimensional binary search trees used for asso-

ciative searching,” Commun. ACM, vol. 18, no. 9, pp. 509-517,

1975.

H. Jégou, M. Douze, and C. Schmid, “Product quantization for

nearest neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 33, no. 1, pp. 117-128, Jan. 2010.

H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg, “Searching in

one billion vectors: Re-rank with source coding,” in Proc. Int. Conf.

Acoust., Speech Signal Process., 2011, pp. 861-864.

C. D. Manning, P. Raghavan, and H. Schutze, Introduction to Infor-

mation Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2008.

O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman, “Total

recall: Automatic query expansion with a generative feature

model for object retrieval,” in Proc. 9th IEEE Int. Conf. Comput.

Vis., 2007, pp. 1-8.

J. Philbin, M. Isard,]. Sivic, and A. Zisserman, “Descriptor learn-

ing for efficient retrieval,” in Proc. 11th Eur. Conf. Comput. Vis.,

2010, pp. 677-691.

W.-L. Zhao, X. Wu, and C.-W. Ngo, “On the annotation of web

videos by efficient near-duplicate search,” in IEEE Trans. Multime-

dia, vol. 12, no. 5, pp. 448-461, May 2010.

P. Indyk and R. Motwani, “Approximate nearest neighbors:

Towards removing the curse of dimensionality,” in Proc. 13th

Annu. ACM Symp. Theory Comput., 1998, pp. 604-613.

M. Charikar, “Similarity estimation techniques from rounding

algorithms,” in Proc. 13th Annu. ACM Symp. Theory Comput., 2002,

pp- 380-388

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 17,2023 at 10:29:50 UTC from IEEE Xplore. Restrictions apply.

1260

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.37, NO.6, JUNE 2015

Q. Lv, M. Charikar, and K. Li, “Image similarity search with com-
pact data structures,” in Proc. 13th ACM Int. Conf. Inf. Knowl. Man-
age., 2004, pp. 208-217.

R. Salakhutdinov and G. E. Hinton, “Semantic hashing,” Int. .
Approx. Reasoning, vol. 50, no. 7, pp. 969-978, 2009.

A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large
image databases for recognition,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2008, pp. 1-8.

M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes
from shift-invariant kernels,” in Proc. Adv. Neural Inf. Process.
Syst., 2009, pp. 1509-1517.

H. Jegou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local
descriptors into a compact image representation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2010, pp. 3304-3311.

H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and
weak geometric consistency for large scale image search,” in Proc.
10th Eur. Conf. Comput. Vis., 2008, pp. 304-317.

A. Babenko and V. Lempitsky, “The inverted multi-index,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012, pp. 3069—
3076.

T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product
quantization,” Tech. Rep. MSR-TR-2013-59, 2013.

T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization
for approximate nearest neighbor search,” CVPR "2013, pp. 2946—
2953.

M. Norouzi and D. J. Fleet, “Cartesian k-means,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2013, pp. 3017-3024.

Y. Kalantidis and Y. Avrithis, “Locally optimized product quanti-
zation for approximate nearest neighbor search,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2014, pp. 2329-2336.

A. Babenko and V. Lempitsky, “Improving bilayer product quan-
tization for billion-scale approximate nearest neighbors in high
dimensions,” CoRR, vol. abs/1404.1831, 2014.

D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.

A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” Int. J. Comput.
Vis., vol. 42, no. 3, pp. 145-175, 2001.

M. Douze, H. Jegou, H. Sandhawalia, L. Amsaleg, and C. Schmid,
“Evaluation of gist descriptors for web-scale image search,” in
Proc. ACM Int. Conf. Image Video Retrieval, 2009, p. 9.

A. Vedaldi and B. Fulkerson. VLFeat: An open and portable
library of computer vision algorithms [Online]. Available:
http://www.vlfeat.org/,2010.

M. L. David, C. Lee, and Q. Ke, “Partition min-hash for partial
duplicate image discovery,” in Proc. 11th Eur. Conf. Comput. Vis.,
2010, pp. 648-662.

O. Chum, J. Philbin, M. Isard, and A. Zisserman, “Scalable near
identical image and shot detection,” in Proc. ACM Int. Conf. Image
Video Retrieval, 2007, pp. 549-556.

Y. Ke, R. Sukthankar, and L. Huston, “Efficient near-duplicate
detection and sub-image retrieval,” in Proc. ACM Multimedia,
2004, pp. 869-876.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost in
quantization: Improving particular object retrieval in large scale
image databases,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2008, pp. 1-8.

H. Jégou, M. Douze, and C. Schmid, “Exploiting descriptor distances
for precise image search,” Institut National De Recherche En Infor-
matique Et En Automatique, Rocquencourt, Paris, Tech. Rep.
7656, 2011.

T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exem-
plar-SVMs for object detection and beyond,” in Proc. 9th IEEE Int.
Conf. Comput. Vis., 2011, pp. 89-96.

Artem Babenko received the MS degree in com-
puter science from the Moscow Institute of Phys-
ics and Technology (MIPT) in 2012. Currently, he
is a researcher at Yandex and also holds a
teacher assistant position in National Research
University Higher School of Economics (HSE).
His research is focused on problems of large
scale image retrieval and recognition.

Victor Lempitsky received the PhD degree
(“kandidat nauk”) from Moscow State University
in 2007. He is an assistant professor at the
Skolkovo Institute of Science and Technology
(Skoltech), which is a new research university in
Moscow area. Prior to that, he held a researcher
position at Yandex, and postdoctoral positions
with the Visual Geometry Group of Oxford Uni-
E versity, as well as with the Computer Vision
Group at Microsoft Research Cambridge. His
research interests are in various aspects of com-
puter vision such as visual recognition, image understanding, fine-
grained classification, visual search, and biomedical image analysis.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 17,2023 at 10:29:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

