
39

BUbiNG: Massive Crawling for the Masses

PAOLO BOLDI, Dipartimento di Informatica, Università degli Studi di Milano, Italy
ANDREA MARINO, Dipartimento di Informatica, Università degli Studi di Milano, Italy
MASSIMO SANTINI, Dipartimento di Informatica, Università degli Studi di Milano, Italy
SEBASTIANO VIGNA, Dipartimento di Informatica, Università degli Studi di Milano, Italy

Although web crawlers have been around for twenty years by now, there is virtually no freely available,
open-source crawling software that guarantees high throughput, overcomes the limits of single-machine
systems and at the same time scales linearly with the amount of resources available. This paper aims at
filling this gap, through the description of BUbiNG, our next-generation web crawler built upon the authors’
experience with UbiCrawler [9] and on the last ten years of research on the topic. BUbiNG is an open-source
Java fully distributed crawler; a single BUbiNG agent, using sizeable hardware, can crawl several thousands
pages per second respecting strict politeness constraints, both host- and IP-based. Unlike existing open-source
distributed crawlers that rely on batch techniques (like MapReduce), BUbiNG job distribution is based on
modern high-speed protocols to achieve very high throughput.

CCS Concepts: • Information systems → Web crawling; Page and site ranking; • Computer systems
organization→ Peer-to-peer architectures;

Additional Key Words and Phrases: Web crawling, Distributed systems, Centrality measures

ACM Reference Format:
Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. 2010. BUbiNG: Massive Crawling for the
Masses. ACM Trans. Web 9, 4, Article 39 (March 2010), 27 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A web crawler (sometimes also known as a (ro)bot or spider) is a tool that downloads systematically
a large number of web pages starting from a seed. Web crawlers are, of course, used by search
engines, but also by companies selling “Search–Engine Optimization” services, by archiving projects
such as the Internet Archive, by surveillance systems (e.g., that scan the web looking for cases of
plagiarism), and by entities performing statistical studies of the structure and the content of the
web, just to name a few.

The basic inner working of a crawler is surprisingly simple from a theoretical viewpoint: it is
a form of graph traversal (for example, a breadth-first visit). Starting from a given seed of URLs,
the set of associated pages is downloaded, their content is parsed, and the resulting links are used
iteratively to collect new pages.

Authors’ addresses: Paolo Boldi, Dipartimento di Informatica, Università degli Studi di Milano, via Comelico 39, Milano,
MI, 20135, Italy, paolo.boldi@unimi.it; Andrea Marino, Dipartimento di Informatica, Università degli Studi di Milano,
via Comelico 39, Milano, MI, 20135, Italy, andreamarino.it@gmail.com; Massimo Santini, Dipartimento di Informatica,
Università degli Studi di Milano, via Comelico 39, Milano, MI, 20135, Italy, massimo.santini@unimi.it; Sebastiano Vigna,
Dipartimento di Informatica, Università degli Studi di Milano, via Comelico 39, Milano, MI, 20135, Italy, vigna@acm.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2009 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1559-1131/2010/3-ART39 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

39:2 P. Boldi et al.

Albeit in principle a crawler just performs a visit of the web, there are a number of factors that
make the visit of a crawler inherently different from a textbook algorithm. The first and most
important difference is that the size of the graph to be explored is unknown and huge; in fact,
infinite. The second difference is that visiting a node (i.e., downloading a page) is a complex process
that has intrinsic limits due to network speed, latency, and politeness—the requirement of not
overloading servers during the download. Not to mention the countless problems (errors in DNS
resolutions, protocol or network errors, presence of traps) that the crawler may find on its way.
In this paper we describe the design and implementation of BUbiNG, our new web crawler

built upon our experience with UbiCrawler [9] and on the last ten years of research on the topic.1
BUbiNG aims at filling an important gap in the range of available crawlers. In particular:

• It is a pure-Java, open-source crawler released under the Apache License 2.0.
• It is fully distributed: multiple agents perform the crawl concurrently and handle the necessary
coordination without the need of any central control; given enough bandwidth, the crawling
speed grows linearly with the number of agents.

• Its design acknowledges that CPUs and OS kernels have become extremely efficient in
handling a large number of threads (in particular, threads that are mainly I/O-bound) and
that large amounts of RAM are by now easily available at a moderate cost. More in detail, we
assume that the memory used by an agent must be constant in the number of discovered URLs,
but that it can scale linearly in the number of discovered hosts. This assumption simplifies
the overall design and makes several data structures more efficient.

• It is very fast: on a 64-core, 64 GB workstation it can download hundreds of million of pages
at more than 10 000 pages per second respecting politeness both by host and by IP, analyzing,
compressing and storing more than 160MB/s of data.

• It is extremely configurable: beyond choosing the sizes of the various data structures and
the communication parameters involved, implementations can be specified by reflection in a
configuration file and the whole dataflow followed by a discovered URL can be controlled by
arbitrary user-defined filters, which can further be combined with standard Boolean-algebra
operators.

• It fully respects the robot exclusion protocol, a de facto standard that well-behaved crawlers
are expected to obey.

• It guarantees that politeness constraints are satisfied both at the host and the IP level, i.e.,
that any two consecutive data requests to the same host (name) or IP are separated by at least
a specified amount of time. The two intervals can be set independently, and, in principle,
customized per host or IP.

• It aims (in its default configuration) at a breadth-first visit, in order to collect pages in a more
predictible and principled manner. To reach this goal, it uses a best-effort approach to balance
download speed, the restrictions imposed by politeness and the speed differences between
hosts. In particular, it guarantees that hostwise the visit is an exact breadth-first visit.

When designing a crawler, one should always ponder over the specific usage the crawler is
intended for. This decision influences many of the design details that need to be taken. Our main
goal is to provide a crawler that can be used out-of-the-box as an archival crawler, but that can
be easily modified to accomplish other tasks. Being an archival crawler, it does not perform any
refresh of the visited pages, and moreover it tries to perform a visit that is as close to breadth-first
as possible (more about this below). Both behaviors can in fact be modified easily in case of need,
but this discussion (on the possible ways to customize BUbiNG) is out of the scope of this paper.

1A preliminary poster appeared in [10].

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

BUbiNG: Massive Crawling for the Masses 39:3

We plan to use BUbiNG to provide new data sets for the research community. Datasets crawled
by UbiCrawler have been used in hundreds of scientific publications, but BUbiNG makes it possible
to gather data orders of magnitude larger.

2 MOTIVATION
There are four main reasons why we decided to design BUbiNG as we described above.

Principled sampling. Analyzing the properties of the web graph has proven to be an elusive goal.
A recent large-scale study [30] has shown, once again, that many alleged properties of the web
are actually due to crawling and parsing artifacts instead. By creating an open-source crawler that
enforces a breadth-first visit strategy, altered by politeness constraints only, we aim at creating
web snapshots providing more reproducible results. While breadth-first visits have their own
artifacts (e.g., they can induce an apparent indegree power law even on regular graphs [5]), they
are a principled approach that has been widely studied and adopted. A more detailed analysis, like
spam detection, topic selection, and so on, can be performed offline. A focused crawling activity
can actually be detrimental to the study of the web, which should be sampled “as it is”.

Coherent time frame. Developing a crawler with speed as a main goal might seem restrictive.
Nonetheless, for the purpose of studying the web, speed is essential, as gathering large snapshots
over a long period of time might introduce biases that would be very difficult to detect and undo.

Pushing hardware to the limit. BUbiNG is designed to exploit hardware to its limits, by carefully
removing bottlenecks and contention usually present in highly parallel distributed crawlers. As
a consequence, it makes performing large-scale crawling possible even with limited hardware
resources.

Consistent crawling and analysis. BUbiNG comes along with a series of tools that make it
possible to analyze the harvested data in a distributed fashion, also exploiting multicore parallelism.
In particular, the construction of the web graph associated with a crawl uses the same parser
as the crawler. In the past, a major problem in the analysis of web crawls turned out to be the
inconsistency between the parsing as performed at crawl time and the parsing as performed
at graph-construction time, which introduced artifacts such as spurious components (see the
comments in [30]). By providing a complete framework that uses the same code both online and
offline we hope to increase the reliability and reproducibility of the analysis of web snapshots.

3 RELATEDWORKS
Web crawlers have been developed since the very birth of the web. The first-generation crawlers
date back to the early 90s: World Wide Web Worm [29], RBSE spider [21], MOMspider [24],
WebCrawler [37]. One of the main contributions of these works has been that of pointing out some
of the main algorithmic and design issues of crawlers. In the meanwhile, several commercial search
engines, having their own crawler (e.g., AltaVista), were born. In the second half of the 90s, the
fast growth of the web called for the need of large-scale crawlers, like the Module crawler [15]
of the Internet Archive (a non-profit corporation aiming to keep large archival-quality historical
records of the world-wide web) and the first generation of the Google crawler [13]. This generation
of spiders was able to download efficiently tens of millions of pages. At the beginning of 2000, the
scalability, extensibility, and distribution of crawlers become a key design point: this was the case of
the Java crawler Mercator [35] (the distributed version of [25]), Polybot [38], IBMWebFountain [20],
and UbiCrawler [9]. These crawlers were able to produce snapshots of the web of hundreds of
millions of pages.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:4 P. Boldi et al.

Recently, a new generation of crawlers was designed, aiming to download billions of pages,
like [27]. Nonetheless, none of them is freely available and open source: BUbiNG is the first
open-source crawler designed to be fast, scalable and runnable on commodity hardware.
For more details about previous works or about the main issues in the design of crawlers, we

refer the reader to [32, 36].

3.1 Open-source crawlers
Although web crawlers have been around for twenty years by now (since the spring of 1993,
according to [36]), the area of freely available ones, let alone open-source, is still quite narrow.
With the few exceptions that will be discussed below, most stable projects we are aware of (GNU
wget or mngoGoSearch, to cite a few) do not (and are not designed to) scale to download more than
few thousands or tens of thousands pages. They can be useful to build an intranet search engine,
but not for web-scale experiments.

Heritrix [2, 33] is one of the few examples of an open-source search engine designed to download
large datasets: it was developed starting from 2003 by Internet Archive [1] and it has been since
actively developed. Heritrix (available under the Apache license), although it is of course multi-
threaded, is a single-machine crawler, which is one of the main hindrances to its scalability. The
default crawl order is breadth-first, as suggested by the archival goals behind its design. On the
other hand, it provides a powerful checkpointing mechanism and a flexible way of filtering and
processing URLs after and before fetching. It is worth noting that the Internet Archive proposed,
implemented (in Heritrix) and fostered a standard format for archiving web content, called WARC,
that is now an ISO standard [4] and that BUbiNG is also adopting for storing the downloaded pages.

Nutch [26] is one of the best known existing open-source web crawlers; in fact, the goal of Nutch
itself is much broader in scope, because it aims at offering a full-fledged search engine under all
respects: besides crawling, Nutch implements features such as (hyper)text-indexing, link analysis,
query resolution, result ranking and summarization. It is natively distributed (using Apache Hadoop
as task-distribution backbone) and quite configurable; it also adopts breadth-first as basic visit
mechanism, but can be optionally configured to go depth-first or even largest-score first, where
scores are computed using some scoring strategy which is itself configurable. Scalability and speed
are the main design goals of Nutch; for example, Nutch was used to collect TREC ClueWeb09
dataset,2 the largest web dataset publicly available as of today consisting of 1 040 809 705 pages,
that were downloaded at the speed of 755.31 pages/s [3]; to do this they used a Hadoop cluster
of 100 machines [16], so their real throughput was of about 7.55 pages/s per machine. This poor
performance is not unexpected: using Hadoop to distribute the crawling jobs is easy, but not
efficient, because it constrains the crawler to work in a batch3 fashion. It should not be surprising
that using a modern job-distribution framework like BUbiNG does increase the throughput by
orders of magnitude.

4 ARCHITECTURE OVERVIEW
BUbiNG stands on a few architectural choices which in some cases contrast the common folklore
wisdom. We took our decisions after carefully comparing and benchmarking several options and
gathering the hands-on experience of similar projects.

2The new ClueWeb12 dataset was collected using Heritrix, instead: five instances of Heritrix, running on five Dell PowerEdge
R410, were run for three months, collecting 1.2 billions of pages. The average speed was of about 38.6 pages per second per
machine.
3In theory, Hadoop may perform the prioritization, de-duplication and distribution tasks while the crawler itself is running,
but this choice would make the design very complex and we do not know of any implementation that chose to follow this
approach.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

BUbiNG: Massive Crawling for the Masses 39:5

• The fetching logic of BUbiNG is built around thousands of identical fetching threads per-
forming only synchronous (blocking) I/O. Experience with recent Linux kernels and increase
in the number of cores per machine shows that this approach consistently outperforms
asynchronous I/O. This strategy simplifies significantly the code complexity, and makes it
trivial to implement features like HTTP/1.1 “keepalive” multiple-resource downloads.

• Lock-free [31] data structures are used to “sandwich” fetching threads, so that they never
have to access lock-based data structures. This approach is particularly useful to avoid direct
access to synchronized data structures with logarithmic modification time, such as priority
queues, as contention between fetching threads can become very significant.

• URL storage (both in memory and on disk) is entirely performed using byte arrays. While
this approach might seen anachronistic, the Java String class can easily occupy three times
the memory used by a URL in byte-array form (both due to additional fields and to 16-bit
characters) and doubles the number of objects. BUbiNG aims at exploiting the large memory
sizes available today, but garbage collection has a linear cost in the number of objects: this
factor must be taken into account.

• Following UbiCrawler’s design [9], BUbiNG agents are identical and autonomous. The as-
signment of URLs to agents is entirely customizable, but by default we use consistent hashing
as a fault-tolerant, self-configuring assignment function.

In this section, we overview the structure of a BUbiNG agent: the following sections detail the
behavior of each component. The inner structure and data flow of an agent is depicted in Figure 1.

The bulk of the work of an agent is carried out by low-priority fetching threads, which download
pages, and parsing threads, which parse and extract information from downloaded pages. Fetching
threads are usually thousands, and spend most of their time waiting for network data, whereas one
usually allocates as many parsing threads as the number of available cores, because their activity is
mostly CPU bound.

Fetching threads are connected to parsing threads using a lock-free result list in which fetching
threads enqueue buffers of fetched data, and wait for a parsing thread to analyze them. Parsing
threads poll the result list using an exponential backoff scheme, perform actions such as parsing
and link extraction, and signal back to the fetching thread that the buffer can be filled again.
As parsing threads discover new URLs, they enqueue them to a sieve that keeps track of which

URLs have been already discovered. A sieve is a data structure similar to a queue with memory:
each enqueued element will be dequeued at some later time, with the guarantee that an element
that is enqueued multiple times will be dequeued just once. URLs are added to the sieve as they are
discovered by parsing.

In fact, every time a URL is discovered it is checked first against a high-performance approximate
LRU cache (kept in core memory) containing 128-bit fingerprints: more than 90% of the URLs
discovered are discarded at this stage. The cache avoids that frequently found URLs put the sieve
under stress, and it has also another important goal: it avoids that frequently found URLs assigned
to another agent are retransmitted many times.
URLs that come out of the sieve are ready to be visited, and they are taken care of (stored,

organized and managed) by the frontier,4 which is actually itself decomposed into several modules.
The most important data structure of the frontier is the workbench, an in-memory data structure

that keeps track of visit states, one for each host currently being crawled: each visit state contains
a FIFO queue of the next URLs to be retrieved from the associated host, and some information
about politeness. This information makes it possible for the workbench to check in constant time

4Note that “frontier” is also a name commonly used for the set of URLs that have been discovered, but not yet crawled. We
use the same term for the data structure that manages them.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:6 P. Boldi et al.

(1)

Sieve Distributor

URL

host ↦ visit state

DNSThread

URL in  
new host

workbench
entry

IP ↦ workbench entry

Workbench

URL in  
known host

visit state
(acquire)

TodoThread

Todo queue
FetchingThreadResults queue

ParsingThread
parsed!

visit state
(put back)

Store

Workbench 
Virtualizer

page, headers etc.

URLs
found

URL

(2)

other
 agents

(3)
URLs

Frontier

DoneThread

Done queue

Refill queue

visit state
(to refill)

URL  
cache

Fig. 1. Overview of the architecture of a BUbiNG agent. Ovals represent data structures, whereas rectangles
represent threads (or sets of threads); we use a gray background for data structures that are partly on-disk,
as explained in the text (the store can in fact be implemented in different ways, although it will typically be
on-disk). The numbered circles are explained in the text.

which hosts can be accessed for download without violating the politeness constraints. Note that
to attain the goal of several thousands downloaded pages per second without violating politeness
constraints it is necessary to keep track of the visit states of hundreds of thousands of hosts.

When a host is ready for download, its visit state is extracted from the workbench and moved to a
lock-free todo queue by a suitable thread. Fetching threads poll the todo queue with an exponential
backoff, fetch resources from the retrieved visit state5 by accessing its URL queue and then put it
back onto the workbench. Note that we expect that once a large crawl has started, the todo queue
will never be empty, so fetching threads will never have to wait. Most of the design challenges of
the frontier components are actually geared towards avoiding that fetching threads ever wait on
an empty todo queue.
The main active component of the frontier is the distributor: it is a high-priority thread that

processes URLs coming out of the sieve (and that must therefore be crawled). Assuming for a
moment that memory is unbounded, the only task of the distributor is that of iteratively dequeueing
a URL from the sieve, checking whether it belongs to a host for which a visit state already exists,

5Possibly multiple resources on a single TCP connection using the “keepalive” feature of HTTP 1.1.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

BUbiNG: Massive Crawling for the Masses 39:7

and then either creating a new visit state or enqueuing the URL to an existing one. If a new visit
state is necessary, it is passed to a set of DNS threads that perform DNS resolution and then move
the visit state onto the workbench.

Since, however, breadth-first visit queues grow exponentially, and the workbench can use only
a fixed amount of in-core memory, it is necessary to virtualize a part of the workbench, that is,
writing on disk part of the URLs coming out of the sieve. To decide whether to keep a visit state
entirely in the workbench or to virtualize it, and also to decide when and how URLs should be
moved from the virtualizer to the workbench, the distributor uses a policy that is described later.
Finally, every agent stores resources in its store (that may possibly reside on a distributed or

remote file system). The native BUbiNG store is a compressed file in the Web ARChive (WARC)
format (the standard proposed and made popular by Heritrix). This standard specifies how to
combine several digital resources with other information into an aggregate archive file. In BUbiNG
compression happens in a heavily parallelized way, with parsing threads independently compressing
pages and using concurrent primitives to pass compressed data to a flushing thread.
In the next sections, we review in more detail the components we just introduced. This time,

we use a bottom-up strategy, detailing first lower-level data structures that can be described and
understood separately, and then going up to the distributor.

4.1 The sieve
A sieve is a queue with memory: it provides enqueue and dequeue primitives, similarly to a standard
queue; each element enqueued to a sieve will be eventually dequeued later. However, a sieve
guarantees also that if an element is enqueued multiple times, it will be dequeued just once. Sieves
of URLs (albeit not called with this name) have always been recognized as a fundamental basic
data structure for a crawler: their main implementation issue lies in the unbounded, exponential
growth of the number of discovered URLs. While it is easy to write enqueued URLs to a disk file,
guaranteeing that a URL is not returned multiple times requires ad-hoc data structures—a standard
dictionary implementation would use too much in-core memory.

The actual sieve implementation used by BUbiNG can be customized, but the default one, called
MercatorSieve, is similar to the one suggested in [25] (hence its name).6 Each URL known to the
sieve is stored as a 64-bit hash in a sorted disk file. Every time a new URL is enqueued, its hash
is stored in an in-memory array, and the URL is saved in an auxiliary file. When the array is full,
it is sorted (indirectly, so to keep track of the original order, too) and compared with the set of
64-bit hashes known to the sieve. The auxiliary file is then scanned, and previously unseen URLs
are stored for later examination. All these operations require only sequential access to all files
involved, and the sizing of the array is based on the amount of in-core memory available. Note that
the output order is guaranteed to be the same of the input order (i.e., new URLs will be examined
in the order of their first appearance).

A generalization of the idea of a sieve, with the additional possibility of associating values with
the elements, is the DRUM (Disk Repository with Update Management) structure used by IRLBot
and described in [27]. A DRUM provides additional operations to retrieve or update the values
associated with the elements. From an implementation viewpoint, DRUM is a Mercator sieve with
multiple arrays, called buckets, in which a careful orchestration of in-memory and on-disk data
makes it possible to sort in one shot sets that are an order of magnitude larger than what the
Mercator sieve would allow using the same quantity of in-core memory. However, to do so DRUM
must sacrifice breadth-first order: due to the inherent randomization of the way keys are placed in

6Observe that different hardward configurations (e.g., availability of large SSD disks) might make a different sieve imple-
mentation preferable.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:8 P. Boldi et al.

the buckets, there is no guarantee that URLs will be crawled in breadth-first order, not even per
host. Finally, the tight analysis in [27] about the properties of DRUM is unavoidably bound to the
single-agent approach of IRLBot: for example, the authors conclude that a URL cache is not useful
to reduce the number of insertions in the DRUM, but the same cache reduces significantly network
transmissions. Based on our experience, once the cache is in place the Mercator sieve becomes
much more competitive.

There are several other implementations of the sieve logic currently used. A quite common choice
is to adopt an explicit queue and a Bloom filter [8] to remember enqueued URLs. Albeit popular, this
choice has no theoretical guarantees: while it is possible to decide a priori the maximum number of
pages that will ever be crawled, it is very difficult to bound in advance the number of discovered
URLs, and this number is essential in sizing the Bloom filter. If the discovered URLs are significantly
more than expected, an unpredictable number of pages will be lost because of false positives. A
better choice is to use a dictionary of fixed-size fingerprints obtained from URLs using a suitable
hash function. The disadvantage is that the structure would no longer use constant memory.
We remark that 64-bit fingerprints can give rise to collisions with significant probability when

crawling more than few hundred millions URLs per agent (the number of agents has no impact on
collisions). It is easy to increase the number of bits in the fingerprints, at the price of a proportionally
higher core-memory usage.

Finally, in particular for larger fingerprints, it can be fruitful to compress the file storing sorted
fingerprints using succinct data structures such as the Elias–Fano representation of monotone
sequences [22].

4.2 The workbench
The workbench is an in-memory data structure that contains the next URLs to be visited. It is one
of the main novel ideas in BUbiNG’s design, and it is one of the main reasons why we can attain a
very high throughput. It is a significant improvement over IRLBot’s two-queue approach [27], as
it can detect in constant time whether a URL is ready for download without violating politeness
limits.

First of all, URLs associated with a specific host7 are kept in a structure called visit state, containing
a FIFO queue of the next URLs to be crawled for that host along with a next-fetch field that
specifies the first instant in time when a URL from the queue can be downloaded, according to
the per-host politeness configuration. Note that inside a visit state we only store a byte-array
representation of the path and query of a URL: this approach significantly reduces object creation,
and provides a simple form of compression by prefix omission.

Visit states are further grouped into workbench entries based on their IP address; every time the
first URL for a given host is found, a new visit state is created and then the IP address is determined
(by one of the DNS threads): the new visit state is either put in a new workbench entry (if no known
host was as associated to that IP address yet), or in an existing one.
A workbench entry contains a queue of visit states (associated with the same IP) prioritized

by their next-fetch field, and an IP-specific next-fetch, containing the first instant in time
when the IP address can be accessed again, according to the per-IP politeness configuration. The
workbench is the queue of all workbench entries, prioritized on the next-fetch field of each entry
maximized with the next-fetch field on the top element of its queue of visit states. In other
words, the workbench is a priority queue of priority queues of FIFO queues (see Figure 2). The two
7Every URL is made [7] by a scheme (also popularly called “protocol”), an authority (a host, optionally a port number, and
perhaps some user information) and a path to the resource, possibly followed by a query (that is separated from the path by
a “?”). BUbiNG’s data structures are built around the pair scheme+authority, but in this paper we will use the more common
word “host” to refer to it.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

BUbiNG: Massive Crawling for the Masses 39:9

next-fetch fields are updated each time a fetching thread completes its access to a host by setting
them to the current time plus the required host/IP politeness delays.

140.47.191.22

175.222.110.44

159.146.22.4

133.45.97.2

130.88.115.1

144.144.12.22

213.43.120.2

178.32.122.1

http://foo.bar https://foo.bar:4000 http://goo.ga

http://booo.ba http://gam.com:2020 http://gin.goo http://toor.bar

http://nanana.no http://ghooo.ga

http://toor.naar http://nnna.noohttps://fooster.baster

http://tar.tor

http://goog.comhttps://tarre.narre.com

http://nix.nox

http://x.y.z:5050

http://nex.nax:42 http://geez.com http://geez.co.uk

http://all.of.it http://some.of.it

workbench entry

visit state

URLs

Fig. 2. The workbench is a priority queue (the vertical queue on the left), whose elements (the workbench
entries) are associated with IP addresses. Each workbench entry is itself a priority queue (the horizontal
queues appearing on the right), whose elements (the visit states) are associated with a host (more precisely: a
scheme and an authority). Each visit state contains a standard FIFO queue (the small piles of blocks below
each visit state), whose elements are the URLs to be visited for that host.

Note that due to our choice of priorities there is a host that can be visited without violating host
or IP politeness constraints if and only if the host associated with the top visit state of the top
workbench entry can be visited. Moreover, if there is no such host, the delay after which a host
will be ready is given by the priority of the top workbench entry minus the current time.

Therefore, the workbench acts as a delay queue: its dequeue operation waits, if necessary, until
a host is ready to be visited. At that point, the top entry E is removed from the workbench and
the top visit state is removed from E. Both removals happen in logarithmic time (in the number
of visit states). The visit state and the associated workbench entry act as a token that is virtually
passed between BUbiNG’s components to guarantee that no component is working on the same
workbench entry at the same time (in particular, this forces both kinds of politeness).

In practice, as we mentioned in the overview, access to the workbench is sandwiched between
two lock-free queues: a todo queue and a done queue. Those queues are managed by two high-priority
threads: the todo thread extracts visit states whose hosts can be visited without violating politeness
constraints and moves them to the todo queue, where they will be retrieved by a fetching thread;
on the other side, the done thread picks the visit states after they have been used by a fetching
thread and puts them back onto the workbench.
The purpose of this setup is to avoid contention by thousands of threads on a relatively slow

structure (as extracting and inserting elements in the workbench takes logarithmic time in the
number of hosts). Moreover, it makes the number of visit states that are ready for downloads easily
measurable: it is just the size of the todo queue. The downside is that, in principle, using very
skewed per-host or per-IP politeness delays might cause the order of the todo queue not to reflect
the actual priority of the visit states contained therein; this phenomenon might push the global
visit order further away from a breadth-first visit.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:10 P. Boldi et al.

4.3 Fetching threads
A fetching thread is a very simple thread that iteratively extracts visit states from the todo queue. If
the todo queue is empty, a standard exponential backoff procedure is used to avoid polling the list
too frequently, but the design of BUbiNG aims at keeping the todo queue nonempty and avoiding
backoff altogether.

Once a fetching thread acquires a visit state, it tries to fetch the first URL of the visit state FIFO
queue. If suitably configured, a fetching thread can also iterate the fetching process on more URLs
for a fixed amount of time, so to exploit the “keepalive” feature of HTTP 1.1.
Each fetching thread has an associated fetch data instance in which the downloaded data are

buffered. Fetch data instances include a transparent buffering method that keeps a fixed amount of
data in memory and dumps on disk the remaining part. By sizing the fixed amount suitably, most
requests can be completed without accessing the disk, but at the same time rare large requests can
be handled without allocating additional memory.
After a resource has been fetched, the fetch data is put in the results queue so that one of the

parsing threads can parse it. Once this process is over, the parsing thread sends a signal back so
that the fetching thread is able to start working on a new URL. Once a fetching thread has to work
on a new visit state, it puts the current visit state in a done queue, from which it will be dequeued
by a suitable thread that will then put it back on the workbench together with its associated entry.

Most of the time, a fetching thread is blocked on I/O, which makes it possible to run thousands of
them in parallel. Indeed, the number of fetching threads determines the amount of parallelization
BUbiNG can achieve while fetching data from the network, so it should be chosen as large as
possible, compatibly with the amount of bandwidth available and with the memory used by fetched
data.

4.4 Parsing threads
A parsing thread iteratively extracts from the result queue the fetch data that have been previously
enqueued by a fetching thread. Then, the content of the HTTP response is analyzed and possibly
parsed. If the response contains an HTML page, the parser will produce a set of URLs that will be
first checked against the URL cache, and then, if not already seen, either sent to another agent, or
enqueued to the same agent’s sieve (circle numbered (3) in Figure 1).
During the parsing phase, a parsing thread computes a digest of the response content. The

signature is stored in a Bloom filter [8] and it is used to avoid saving several times the same page
(or near-duplicate pages). Finally, the content of the response is saved to the store.

Since two pages are considered (near-)duplicates whether they have the same signature, the
digest computation is responsible for content-based duplicate detection. In the case of HTML pages,
in order to collapse near-duplicates, some heuristic is used. In particular, an hash fingerprint is
computed on a summarized content, which is obtained by stripping HTML attributes, and discarding
digits and dates from the response content. This simple heuristic allows for instance to collapse
pages that differs just for visitor counters or calendars. In a post-crawl phase, there are several more
sophisticated approaches that can be applied, like shingling [14], simhash [18], fuzzy fingerprinting
[17, 23], and others (e.g., [28]).

For the sake of description, we will call duplicate pages that are (near-)duplicates of some other
page previously crawled according to the above definition, while we will call archetypes the set of
pages that are not duplicates.

Since we are interested in archival-quality crawling, duplicate detection is by default restricted to
be intra-site (the digest is initialized with the host name). Different hosts are allocated to different
agents, so there is no need for inter-agent detection. Indeed, post-crawl experiments show that

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

BUbiNG: Massive Crawling for the Masses 39:11

even relaxing duplicate detection to work inter-site we would eliminate less than 10% pages in the
crawls discussed in Section 6 (in fact, 6.5% for gsh-2015, 8.6% for uk-2014 and 3.3% for eu-2015).

4.5 DNS threads
DNS threads are used to solve host names of new hosts: a DNS thread continuously dequeues from
the list of newly discovered visit states and resolves its host name, adding it to a workbench entry
(or creating a new one, if the IP address itself is new), and putting it on the workbench. In our
experience, it is essential to run a local recursive DNS server to avoid the bottleneck caused by an
external server.
Presently, in case a host resolves to mulitple IPs we pick the first one returned by the DNS

resolver. Since the DNS resolver class is entirely configurable, this can be decided by the user (round
robin, random, etc.). The default implementation is based on the open-source DnsJava resolver.8

4.6 The workbench virtualizer
The workbench virtualizer maintains on disk a mapping from hosts to FIFO virtual queues of URLs.
Conceptually, all URLs that have been extracted from the sieve but have not yet been fetched are
enqueued in the workbench visit state they belong to, in the exact order in which they came out
of the sieve. Since, however, we aim at crawling with an amount of memory that is constant in
the number of discovered URLs, part of the queues must be written on disk. Each virtual queue
contains a fraction of URLs from each visit state, in such a way that the overall URL order respects,
per host, the original breadth-first order.
Virtual queues are consumed as the visit proceeds, following the natural per-host breadth-first

order. As fetching threads download URLs, the workbench is partially freed and can be filled with
URLs coming from the virtual queues. This action is performed by the same thread emptying the
done queue (the queue containing the visit states after fetching): as it puts visit states back on the
workbench, it selects visit states with URLs on disk but no more URLs on the workbench and puts
them on a refill queue that will be later read by the distributor.
Initially, we experimented with virtualizers inspired by the BEAST module of IRLbot [27],

although many crucial details of their implementation were missing (e.g., the treatment of HTTP
and connection errors); moreover, due to the static once-for-all distribution of URLs among a
number of physical on-disk queues, it was impossible to guarantee adherence to a breadth-first
visit in the face of unpredictable network-related faults.

Our second implementation was based on the Berkeley DB, a key/value store that is also used
by Heritrix. While extremely popular, Berkeley DB is a general-purpose storage system, and in
particular in Java it has a very heavy load in terms of object creation and corresponding garbage
collection. While providing in principle services like URL-level prioritization (which was not one of
our design goals), Berkeley DB was soon detected to be a serious bottleneck in the overall design.
We thus decided to develop an ad-hoc virtualizer oriented towards breadth-first visits. We

borrowed from Berkeley DB the idea of writing data in log files that are periodically collected, but
we decided to rely on memory mapping to lessen the I/O burden.

In our virtualizer, on-disk URL queues are stored in log files that are memory mapped and
transparently thought of as a contiguous memory region. Each URL stored on disk is prefixed with
a pointer to the position of the next URL for the same host. Whenever we append a new URL,
we modify the pointer of the last stored URL for the same host accordingly. A small amount of
metadata associated with each host (e.g., the head and tail of its queue) is stored in main memory.

8http://www.xbill.org/dnsjava/

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:12 P. Boldi et al.

As URLs are dequeued to fill the workbench, part of the log files become free. When the ratio
between the used and allocated space goes below a threshold (e.g., 50%), a garbage-collection
process is started. Due to the fact that URLs are always appended, there is no need to keep track of
free space: we just scan the queues in order of first appearance in the log files and gather them at
the start of the memory-mapped space. By keeping track (in a priority queue) of the position of the
next URL to be collected in each queue, we can move items directly to their final position, updating
the queue after each move. We stop when enough space has been freed, and delete the log files that
are now entirely unused.
Note that most of the activity of our virtualizer is caused by appends and garbage collections

(reads are a lower-impact activity that is necessarily bound by the network throughput). Both
activities are highly localized (at the end of the currently used region in the case of appends, and
at the current collection point in the case of garbage collections), which makes a good use of the
caching facilities of the operating system.

4.7 The distributor
The distributor is a high-priority thread that orchestrates the movement of URLs out of the sieve,
and loads URLs from virtual queues into the workbench as necessary.
As the crawl proceeds, URLs get accumulated in visit states at different speeds, both because

hosts have different responsiveness and because websites have different sizes and branching factors.
Moreover, the workbench has a (configurable) limit size that cannot be exceeded, since one of
the central design goals of BUbiNG is that the amount of main memory occupied cannot grow
unboundedly in the number of the discovered URLs, but only in the number of hosts discovered.
Thus, filling the workbench blindly with URLs coming out of the sieve would soon result in having
in the workbench only URLs belonging to a limited number of hosts.

The front of a crawl, at any given time, is the number of visit states that are ready for download
respecting the politeness constraints. The front size determines the overall throughput of the
crawler—because of politeness, the number of distinct hosts currently being visited is the crucial
datum that establishes how fast or slow the crawl is going to be.
One of the two forces driving the distributor is, indeed, that the front should always be large

enough so that no fetching thread has ever to wait. To attain this goal, the distributor enlarges
dynamically the required front size, which is an estimate of the number of hosts that must be visited
in parallel to keep all fetching threads busy: each time a fetching thread has to wait, albeit the
current front size is larger than the current required front size, the latter is increased. After a
warm-up phase, the required front size stabilizes to a value that depends on the kind of hosts visited
and on the amount of resources available. At that point, it is impossible to have a faster crawl given
the resources available, as all fetching threads are continuously downloading data. Increasing the
number of fetching threads, of course, may cause an increase of the required front size.
The second force driving the distributor is the (somewhat informal) requirement that we try to

be as close to a breadth-first visit as possible. Note that this force works in an opposite direction with
respect to enlarging the front—URLs that are already in existing visit states should be in principle
visited before any URL in the sieve, but enlarging the front requires dequeueing more URLs from
the sieve to find new hosts.
The distributor is also responsible for filling the workbench with URLs coming either out of

the sieve, or out of virtual queues (circle numbered (1) in Figure 1). Once again, staying close to a
breadth-first visit requires loading URLs in virtual queues, but keeping the front large might call
for reading URLs from the sieve to discover new hosts.

The distributor privileges refilling the queues of the workbench using URLs from the virtualizer,
because this makes the visit closer to an exact breadth-first. However, if no refill has to be performed

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

BUbiNG: Massive Crawling for the Masses 39:13

Wait

Workbench
full ?

Front size <
required ?

Process URL
from sieve

Refill from
corresponding

host refill queue

Keep waiting:
no need
to visit
more hosts

Keep waiting:
no space

in memory

No

Yes

Yes

No

Yes

No

Host refill
queue empty?

Fig. 3. How the distributor interacts with the sieve, the workbench and the workbench virtualizer.

and the front is not large enough, the distributor will read from the sieve, hoping to find new hosts
to make the front larger.
When the distributor reads a URL from the sieve, the URL can either be put in the workbench

(circle numbered (2) in Figure 1) or written in a virtual queue, depending on whether there are
already URLs on disk for the same host, and on the number of URLs per IP address that should be
in the workbench to keep it full, but not overflowing, when the front is of the required size.

4.8 Configurability
To make BUbiNG capable of a versatile set of tasks and behaviors, every crawling phase (fetching,
parsing, following the URLs of a page, scheduling new URLs, storing pages) is controlled by a filter,
a Boolean predicate that determines whether a given resource should be accepted or not. Filters
can be configured both at startup and at runtime allowing for a very fine-grained control.
Different filters apply to different types of objects: a prefetch filter is one that can be applied to

URLs (typically: to decide whether a URL should be scheduled for later visit, or should be fetched); a
postfetch filter is one that can be applied to fetched responses and decides whether to do something
with a response (typically: whether to parse it, to store it, etc.).

4.9 URL normalization
BURL (a short name for “BUbiNG URL”) is the class responsible for parsing and normalizing URLs
found in web pages. The topic of parsing and normalization is much more involved than one might
expect—very recently, the failure in building a sensible web graph from the ClueWeb09 collection
stemmed in part from the lack of suitable normalization of the URLs involved. BURL takes care of
fine details such as escaping and de-escaping (when unnecessary) of non-special characters and
case normalization of percent-escape.

4.10 Distributed crawling
BUbiNG crawling activity can be distributed by running several agents over multiple machines.
Similarly to UbiCrawler [9], all agents are identical instances of BUbiNG, without any explicit
leadership: all data structures described above are part of each agent.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:14 P. Boldi et al.

Table 1. Comparison between BUbiNG and the main existing open-source crawlers. Resources are HTML
pages for ClueWeb09 and IRLBot, but include other data types (e.g., images) for ClueWeb12. For reference,
we also report the throughput of IRLbot [27], although the latter is not open source. Note that ClueWeb09
was gathered using a heavily customized version of Nutch.

Resources Resources/s Speed in MB/s
Crawler Machines (Millions) overall per agent overall per agent

Nutch (ClueWeb09) 100 (Hadoop) 1 200 430 4.3 10 0.1
Heritrix (ClueWeb12) 5 2 300 300 60 19 4
Heritrix (in vitro) 1 115 370 370 4.5 4.5
IRLBot 1 6 380 1 790 1 790 40 40
BUbiNG (iStella) 1 500 3 700 3 700 154 154
BUbiNG (in vitro) 4 1 000 40 600 10 150 640 160

URL assignment to agents is entirely configurable. By default, BUbiNG uses just the host to
assign a URL to an agent, which avoids that two different agents can crawl the same host at the
same time. Moreover, since most hyperlinks are local, each agent will be himself responsible for
the large majority of URLs found in a typical HTML page [36]. Assignment of hosts to agents is by
default performed using consistent hashing [9].
Communication of URLs between agents is handled by the message-passing methods of the

JGroups Java library; in particular, to make communication lightweight URLs are by default dis-
tributed using UDP. More sophisticated communications between the agents rely on the TCP-based
JMX Java standard remote-control mechanism, which exposes most of the internal configuration
parameters and statistics. Almost all crawler structures are indeed modifiable at runtime.

5 EXPERIMENTS
Testing a crawler is a delicate, intricate, arduous task: on one hand, every real-world experiment is
obviously influenced by the hardware at one’s disposal (in particular, by the available bandwidth).
Moreover, real-world tests are difficult to repeat many times with different parameters: you will
either end up disturbing the same sites over and over again, or choosing to visit every time
a different portion of the web, with the risk of introducing artifacts in the evaluation. Given
these considerations, we ran two kinds of experiments: one batch was performed in vitro with a
HTTP proxy9 simulating network connections towards the web and generating fake HTML pages
(with a configurable behavior that includes delays, protocol exceptions etc.), and another batch of
experiments was performed in vivo.

5.1 In vitro experiments: BUbiNG
To verify the robustness of BUbiNG when varying some basic parameters, such as the number of
fetching threads or the IP delay, we decided to run some in vitro simulations on a group of four
machines sporting 64 cores and 64GB of core memory. In all experiments, the number of parsing
and DNS threads was fixed and set respectively to 64 and 10. The size of the workbench was set to
512MB, while the size of the sieve was set to 256MB. We always set the host politeness delay equal
to the IP politeness delay. Every in vitro experiment was run for 90 minutes.
Fetching threads. The first thing we wanted to test was that increasing the number of fetching
threads yields a better usage of the network, and hence a larger number of requests per second,
until the bandwidth is saturated. The results of this experiment are shown in Figure 4 and have
9The proxy software is distributed along with the rest of BUbiNG.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

BUbiNG: Massive Crawling for the Masses 39:15

 1

 10

 100

 1 10 100 1000 10000

P
ro

x
y

 s
at

u
ra

ti
o

n
 %

Number of threads

125 KB/s
250 KB/s
500 KB/s

1000 KB/s
2000 KB/s

Fig. 4. The saturation of a 100-threads proxy that simulates different download speeds (per thread) using a
different number of fetching thread. Note the increase in speed until the plateau, which is reached when the
proxy throughput is saturated.

been obtained using a 100-thread proxy and a politeness delay of 8 seconds. Each thread emits
data at the speed shown in the legend, and, as we remarked previously, the proxy generates also a
fraction of very slow pages and network errors to simulate a realistic environment.

The behavior visible in the plot tells us that the increase in the number of fetching threads yields
a linear increase in network utilization until the available (simulated) bandwidth is reached. At that
point, we do not see any decrease in the throughput, witnessing the fact that our infrastructure
does not cause any hindrance to the crawl.
Politeness. Our second in vitro experiment tests what happens when one increases the amount of
politeness, as determined by the IP delay, depending on the amount of threads. We plot BUbiNG’s
throughput as the IP delay (hence the host delay) increases in Figure 5 (middle): to maintain
the same throughput, the front size (i.e., the number of hosts being visited in parallel, shown in
Figure 5, top) must increase, as expected. The front grows almost linearly with the number of
threads until the proxy bandwidth is saturated. In the same figure (middle) we show that the average
throughput is independent from the politeness (once again, once we saturate the proxy bandwidth
the throughput becomes stable with respect to the number of threads), and the same is true of the
CPU load (Figure 5, bottom). This is a consequence of BUbiNG modifying dynamically the number
of hosts in the front.
Multiple agents. A similar experiment was run with multiple crawling agents (1, 2, 4) still experi-
menting with a varying number of fetching threads per agent. The results are shown in Figure 6.
The average speed is not influenced by the number of agents (upper plot), but only by the number
of threads.
Testing for bottlenecks: no I/O. Finally, we wanted to test whether our lock-free architecture
was actually able to sustain a very high parallelism. To do so, we ran a no-I/O test on a 40-core
workstation. The purpose of the test was to stress the computation and contention bottlenecks
in absence of any interference from I/O: thus, input from the network was generated internally
using the same logic of our proxy, and while data was fully processed (e.g., compressed) no actual

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:16 P. Boldi et al.

 0

 50000

 100000

 150000

 200000

 250000

 0 1000 2000 3000 4000 5000 6000 7000 8000

F
ro

n
t

si
ze

 (
IP

s)

IP delay (ms)

4 threads
16 threads
64 threads

256 threads
1024 threads

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
v

er
ag

e
S

p
ee

d
 (

R
eq

u
es

ts
/s

)

IP delay (ms)

4 threads
16 threads
64 threads

256 threads
1024 threads

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
v
er

ag
e

C
p
u

 L
o
ad

IP delay (ms)

4 threads
16 threads
64 threads

256 threads
1024 threads

Fig. 5. The average size of the front, the average number of requests per second, and the average CPU load
with respect to the IP delay (the host delay is set to eight times the IP delay). Note that the front adapts to
the growth of the IP delay, and that the number of fetching threads has little influence once we saturate the
proxy bandwidth.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

BUbiNG: Massive Crawling for the Masses 39:17

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200

P
ag

es
/s

Number of threads

1 agent
2 agents
4 agents

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 4

P
ag

es
/s

Number of agents

4 threads
16 threads
64 threads

256 threads

Fig. 6. The average number of pages per second per agent using many agents, with varying number of
fetching threads per agent.

storage was performed. After 100 million pages, the average speed was 16 000 pages/s (peak 22 500)
up to 6 000 threads. We detected the first small decrease in speed (15 300 pages/s, peak 20 500) at
8 000 threads, which we believe is to be expected due to increased context switch and Java garbage
collection. With this level of parallelism, our lock-free architecture is about 30% faster in terms
of downloaded pages (with respect to a version of BUbiNG in which threads access directly the
workbench). The gap widens as the threads increase and the politeness policy gets more strict, as
keeping all threads busy requires enlarging the front, and thus the workbench: a larger workbench
implies logarithmically slower operations, and thus more contention. Of course, if the number of
threads is very small the lock-free structure is not useful, and in fact the overhead of the “sandwich”
can slightly slow down the crawler.

5.2 In vitro experiments: Heritrix
To provide a comparison of BUbiNG with another crawler in a completely equivalent setting,
we ran a raw-speed test using Heritrix 3.2.0 on the same hardware as in the BUbiNG raw-speed

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:18 P. Boldi et al.

experiment, always using a proxy with the same setup. We configured Heritrix to use the same
amount of memory, 20% of which was reserved for the Berkeley DB cache. We used 1 000 threads,
locked the politeness interval to 10 seconds regardless of the download time (by default, Heritrix
uses an adaptive scheme), and enabled content-based duplicate detection.10 The results obtained
will be presented and discussed in Section 5.4.

5.3 In vivo experiments
We performed a number of experiments in vivo at different sites. The main problem we had to face
is that a single BUbiNG agent on sizable hardware can saturate a 1Gb/s geographic link, so, in fact,
we were not initially able to perform any test in which the network was not capping the crawler.
Finally, iStella, an Italian commercial search engine provided us with a 48-core, 512 GB RAM with a
2Gb/s link. The results are extremely satisfactory: in the iStella experiment we were able to keep
a steady download speed of 1.2Gb/s using a single BUbiNG agent crawling the .it domain. The
overall CPU load was about 85%.

5.4 Comparison
When comparing crawlers, manymeasures are possible, and depending on the task at hand, different
measures might be suitable. For instance, crawling all types of data (CSS, images, etc.) usually
yields a significantly higher throughput than crawling just HTML, since HTML pages are often
rendered dynamically, sometimes causing a significant delay, whereas most other types are served
statically. The crawling policy has also a huge influence on the throughput: prioritizing by indegree
(as IRLBot does [27]) or alternative importance measure shifts most of the crawl on sites hosted
on powerful servers with large-bandwidth connection. We remind that BUbiNG aims at archival-
quality crawling, to which such a significant departure from the natural (breadth-first) crawl order
would be extremely detrimental.

Ideally, crawlers should be compared on a crawl with given number of pages in breadth-first
fashion from a fixed seed, but some crawlers are not available to the public, which makes this goal
unattainable.

In Table 1 we gather some evidence of the excellent performance of BUbiNG. Part of the data is
from the literature, and part has been generated during our experiments.

First of all, we report performance data for Nutch and Heritrix from the recent crawls made for
the ClueWeb project (ClueWeb09 and ClueWeb12). The figures are those available in [16] along with
those found in [3] and http://boston.lti.cs.cmu.edu/crawler/crawlerstats.html: notice that the data
we have about those collections are sometimes slightly contradictory (we report the best figures).
The comparison with the ClueWeb09 crawl is somewhat unfair (the hardware used for that dataset
was “retired search-engine hardware”), whereas the comparison with ClueWeb12 is more unbiased,
as the hardware used was more recent. We report the throughput declared by IRLBot [27], too,
albeit the latter is not open source and the downloaded data is not publicly available.

Then, we report experimental in vitro data about Heritrix and BUbiNG obtained, as explained in
the previous section, using the same hardware, a similar setup, and a HTTP proxy generating web
pages.11 This figures are the ones that can be compared more appropriately. Finally, we report the
data of the iStella experiment.

The results of the comparison show quite clearly that the speed of BUbiNG is several times that
of IRLBot and one to two orders of magnitude larger than that of Heritrix or Nutch.

10We thank Gordon Mohr, one of the authors of Heritrix, for suggesting us how to configure it for a large workstation.
11Note that, with the purpose of stress testing the crawler internals, our HTTP proxy generates fairly short pages. This
feature explains the wildly different ratio between MB/s and resources/s when looking at in vitro and in vivo experiments.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

http://boston.lti.cs.cmu.edu/crawler/crawlerstats.html

BUbiNG: Massive Crawling for the Masses 39:19

All in all, our experiments show that BUbiNG’s adaptive design provides a very high through-
put, in particular when a strong politeness is desired: indeed, from our comparison, the highest
throughput. The fact that the throughput can be scaled linearly just by adding agents makes it by
far the fastest crawling system publicly available.

6 THREE DATASETS
As a stimulating glimpse into the capabilities of BUbiNG to collect interesting datasets, we describe
the main features of three snapshots collected with different criteria. All snapshots contain about
one billion unique pages (the actual crawls are significantly larger, due to duplicates).

• uk-2014: a snapshot of the .uk domain, taken with a limit of 10 000 pages per host starting
from the BBC website.

• eu-2015: a “deep” snapshot of the national domains of the European Union, taken with a
limit of 10 000 000 pages per host starting from europa.eu.

• gsh-2015: a general “shallow” worldwide snapshot, taken with a limit of 100 pages per host,
always starting from europa.eu.

The uk-2014 snapshot follows the tradition of our laboratory of taking snapshots of the .uk domain
for linguistic uniformity, and to obtain a regional snapshot. The second and third snapshot aims at
exploring the difference in the degree distribution and in website centrality in two very different
kinds of data-gathering activities. In the first case, the limit on the pages per host is so large that, in
fact, it was never reached; it is a quite faithful “snowball sampling” due to the breadth-first nature
of BUbiNG’s visits. In the second case, we aim at maximizing the number of collected hosts by
downloading very few pages per host. One of the questions we are trying to answer using the latter
two snapshots is: how much is the indegree distribution dependent on the cardinality of sites (root
pages have an indegree usually at least as large as the site size), and how much is it dependent on
inter-site connections?

The main data, and some useful statistics about the three datasets, are shown in Table 2. Among
these, we have the average number of links per page (average outdegree) and the average number
of links per page whose destination is on a different host (average external outdegree). Moreover,
concerning the graph induced by the pages of our crawls, we also report the average distance, the
harmonic diameter (e.g., the harmonic mean of all the distances), and the percentage of reachable
pairs of pages in this graph (e.g., pairs of nodes (x ,y) for which there exists a directed path from x
to y).

6.1 Degreee distribution
The indegree and outdegree distributions are shown in Figures 7, 8, 9 and 10. We provide both a
degree-frequency plot decorated with Fibonacci binning [39], and a degree-rank plot12 to highlight
with more precision the tail behaviour.

From Table 2, we can see that pages at low depth tend to have less outlinks, but more external
links than inner pages. The content is similarly smaller (content lives deeper in the structure of
websites). Not surprisingly, moreover, pages of the shallow snapshot are closer to one another.

The most striking feature of the indegree distribution is an answer to our question: the tail of the
indegree distribution is, by and large, shaped by the number of intra-host inlinks of root pages. This is
very visible in the uk-2014 snapshot, where limiting the host size at 10 000 causes a sharp step in
the degree-rank plot; and the same happens at 100 for gsh-2015. But what is maybe even more
interesting is that the visible curvature of eu-2015 is almost absent from gsh-2015. Thus, if the
12Degree-rank plots are the numerosity-based discrete analogous of the complementary cumulative distribution function of
degrees. They give a much clearer picture than frequency dot plots when the data points are scattered and highly variable.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:20 P. Boldi et al.

Table 2. Basic data

uk-2014 gsh-2015 eu-2015

Overall 1 477 881 641 1 265 847 463 1 301 211 841
Archetypes 787 830 045 1 001 310 571 1 070 557 254
Avg. content length 56 039 32 526 57 027
Avg. outdegree 105.86 96.34 142.60
Avg. external outdegree 25.53 33.68 25.34
Avg. distance 20.61 12.32 12.45
Harmonic diameter 24.63 14.91 14.18
Reachable pairs 67.27% 80.29% 85.14%

latter (being mainly shaped by inter-host links) has some chance of being a power-law, as proposed
by the class of “richer get richer” models, the former has none. Its curvature clearly shows that
the indegree distribution is not a power-law (a phenomenon already noted in the analysis of the
Common Crawl 2012 dataset [30]): fitting it with the method by Clauset, Shalizi and Newman [19]
gives a p-value < 10−5 (and the same happens for the top-level domain graph).

6.2 Centrality
Table 4, 5 and 6 report centrality data about our three snapshots. Since the page-level graph gives
rise to extremely noisy results, we computed the host graph and the top-level domain graph. In the
first graph, a node is a host, and there is an arc from host x to host y if some page of x points to
some page of y. The second graph is built similarly, but now a node is a set of hosts sharing the
same top-level domain (TLD). The TLD of a URL is determined from its host using the Public Suffix
List published by the Mozilla Foundation,13 and it is defined as one dot level above that the public
suffix of the host: for example, a.com for b.a.com (as .com is on the public suffix list) and c.co.uk for
a.b.c.co.uk (as .co.uk is on the public suffix list).14
For each graph, we display the top ten nodes by indegree, PageRank (with constant preference

vector and α = 0.85) and by harmonic centrality [12], the harmonic mean of all distance towards a
node. PageRank was computed with the highest possible precision in IEEE format using the LAW
library, whereas harmonic centrality was approximated using HyperBall [11].
Besides the obvious shift of importance (UK government sites for uk-2014, government/news

sites in eu-2015 and large US companies in gsh-2015), we con confirm the results of [30]: on these
kinds of graphs, harmonic centrality is much more precise and less prone to spam than indegree or
PageRank. In the host graphs, almost all results of indegree and most results of PageRank are spam
or service sites, whereas harmonic centrality identifies sites of interest (in particular in uk-2014
and eu-2015). At the TLD level, noise decreases significantly, but the difference in behavior is still
striking, with PageRank and indegree still displaying several service sites, hosting providers and
domain sellers as top results.

7 COMPARISONWITH PREVIOUS CRAWLS
In Table 3 we compare the statistics of the HTTP statuses found during the crawling process. We
use as a comparison Table I from [6], which report both data about the IRLBot crawl [27] (6.3

13http://publicsuffix.org/list/
14Top-level domains have been called pay-level domain in [30]

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

a.com
b.a.com
.com
c.co.uk
a.b.c.co.uk
.co.uk
http://publicsuffix.org/list/

BUbiNG: Massive Crawling for the Masses 39:21

Table 3. Comparison of HTTP statuses with those from [6], reporting IRLBot data [27] and Mercator data
from [34]).

uk-2014 gsh-2015 eu-2015
IRLBot Mercator

All Arch. All Arch. All Arch.
2XX 85.56% 81.11% 86.41% 86.39% 90.34% 87.4% 86.79% 88.50%
3XX 11.02% 11.6% 10.53% 12.57% 7.18% 11.62% 8.61% 3.31%
4XX 2.74% 6.31% 2.58% 0.88% 2.24% 0.84% 4.11% 6.46%
5XX 0.67% 0.98% 0.48% 0.16% 0.24% 0.14% 0.35% —
Other < 0.001% < 0.001% < 0.001% < 0.001% < 0.001% < 0.001% 0.12% 1.73%

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

0 1 10 10
2

10
3

10
4

10
5

10
6

fr
eq
u
en
cy

indegree

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

0 1 10 10
2

10
3

10
4

10
5

10
6

10
7

fr
eq
u
en
cy

indegree

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

0 1 10 10
2

10
3

10
4

10
5

10
6

10
7

fr
eq
u
en
cy

indegree

Fig. 7. Indegree plots for uk-2014, gsh-2015 and eu-2015 (degree/frequency plots with Fibonacci binning).

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0 1 10 10
2

10
3

10
4

10
5

10
6

ra
n
k

indegree

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0 1 10 10
2

10
3

10
4

10
5

10
6

10
7

ra
n
k

indegree

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

0 1 10 10
2

10
3

10
4

10
5

10
6

10
7

ra
n
k

indegree

Fig. 8. Indegree plots for uk-2014, gsh-2015 and eu-2015 (cumulative degree/rank plots).

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

0 1 10 10
2

10
3

10
4

fr
eq
u
en
cy

outdegree

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

0 1 10 10
2

10
3

10
4

fr
eq
u
en
cy

outdegree

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

0 1 10 10
2

10
3

10
4

fr
eq
u
en
cy

outdegree

Fig. 9. Outdegree plots for uk-2014, gsh-2015 and eu-2015 (degree/frequency plots with Fibonacci binning).

billion pages), and data about a Mercator crawl [34] (819 million pages). The Mercator data should
be compared with the columns labelled “Arch.”, which are based on archetypes only, and thus do
not comprise pages with duplicated content. The IRLBot data, coming from a crawler that does not

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:22 P. Boldi et al.
Table

4.
M
ost

relevant
hosts

and
TPD

s
of

uk-2014
by

diff
erent

centrality
m
easures.

Indegree
PageRank

H
arm

onic
centrality

H
ostG

raph
postcodeof.co.uk

726240
postcodeof.co.uk

0.02988
postcodeof.co.uk

1318833.61
nam

efun.co.uk
661692

nam
efun.co.uk

0.02053
w
w
w
.google.co.uk

1162789.19
w
w
w
.slovakiatrade.co.uk

128291
w
w
w
.slovakiatrade.co.uk

0.00543
w
w
w
.nisra.gov.uk

1130915.01
catalog.slovakiatrade.co.uk

103991
catalog.slovakiatrade.co.uk

0.00462
w
w
w
.ons.gov.uk

1072752.04
w
w
w
.quiltersguild.org.uk

93573
london.postcodeof.co.uk

0.00462
w
w
w
.bbc.co.uk

1067880.20
quiltersguild.org.uk

93476
w
w
w
.spanishtrade.co.uk

0.00400
nam

efun.co.uk
1057516.35

w
w
w
.spanishtrade.co.uk

87591
catalog.spanishtrade.co.uk

0.00376
w
w
w
.ordnancesurvey.co.uk

1043468.95
catalog.spanishtrade.co.uk

87562
w
w
w
.germ

anytrade.co.uk
0.00346

w
w
w
.gro-scotland.gov.uk

1025953.27
w
w
w
.germ

anytrade.co.uk
73852

w
w
w
.italiantrade.co.uk

0.00323
w
w
w
.ico.gov.uk

1004464.11
catalog.germ

anytrade.co.uk
73850

catalog.germ
anytrade.co.uk

0.00322
w
w
w
.nhs.uk

1003575.06
TPD

G
raph

bbc.co.uk
60829

google.co.uk
0.00301

bbc.co.uk
422486.00

google.co.uk
54262

123-reg-expired.co.uk
0.00167

google.co.uk
419942.55

w
w
w
.nhs.uk

22683
bbc.co.uk

0.00150
direct.gov.uk

375068.62
direct.gov.uk

20579
ico.gov.uk

0.00138
parliam

ent.uk
371941.43

nationaltrust.org.uk
20523

freeparking.co.uk
0.00093

w
w
w
.nhs.uk

370448.34
hse.gov.uk

13083
ico.org.uk

0.00088
ico.gov.uk

368878.14
tim

esonline.co.uk
11987

w
ebsite-law

.co.uk
0.00087

nationaltrust.org.uk
367367.47

am
azon.co.uk

11900
hibu.co.uk

0.00085
telegraph.co.uk

364763.80
parliam

ent.uk
11622

1and1.co.uk
0.00073

hm
rc.gov.uk

364530.15
telegraph.co.uk

11467
tripadvisor.co.uk

0.00062
hse.gov.uk

361314.39

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

BUbiNG: Massive Crawling for the Masses 39:23
Ta
bl
e
5.

M
os
t
re
le
va
nt

ho
st
s
an

d
TP

D
s
of

eu
-2

01
5
by

di
ff
er
en
t
ce
nt
ra
lit
y
m
ea
su
re
s.

In
de
gr
ee

Pa
ge
Ra

nk
H
ar
m
on

ic
ce
nt
ra
lit
y

H
os
tG

ra
ph

w
w
w
.to

pl
is
t.c
z

17
44
33

w
w
w
.m

yb
lo
g.
de

0.
00
12
27

yo
ut
u.
be

23
68
00
4.
25

w
w
w
.ra

di
o.
de

13
92
90

w
w
w
.d
om

ai
nn

am
e.
de

0.
00
12
15

ec
.e
ur
op

a.
eu

22
80
83
6.
77

w
w
w
.ra

di
o.
fr

13
88
77

w
w
w
.to

pl
is
t.c
z

0.
00
11
35

eu
ro
pa
.e
u

21
70
91
6.
37

w
w
w
.ra

di
o.
at

13
88
71

w
w
w
.e
st
ra
nk

y.
cz

0.
00
08
74

w
w
w
.b
bc
.co

.u
k

20
98
54
2.
10

w
w
w
.ra

di
o.
it

13
88
47

w
w
w
.b
ee
pw

or
ld
.d
e

0.
00
08
21

w
w
w
.sp

ie
ge
l.d
e

20
82
36
3.
21

w
w
w
.ra

di
o.
pt

13
88
45

w
w
w
.a
ct
iv
e2
4.
cz

0.
00
06
66

w
w
w
.g
oo

gl
e.
de

20
61
91
6.
72

w
w
w
.ra

di
o.
pl

13
88
43

w
w
w
.lo
vd
at
a.
no

0.
00
05
19

w
w
w
.e
ur
op

ar
l.e
ur
op

a.
eu

20
50
11
0.
04

w
w
w
.ra

di
o.
se

13
88
40

w
w
w
.m

pl
ay
.n
l

0.
00
04
90

ne
w
s.b

bc
.co

.u
k

20
46
32
5.
37

w
w
w
.ra

di
o.
es

13
88
39

zl
.lv

0.
00
04
79

cu
ria

.e
ur
op

a.
eu

20
38
53
2.
77

w
w
w
.ra

di
o.
dk

13
88
38

w
w
w
.m

ap
y.
cz

0.
00
04
72

eu
r-
le
x.
eu
ro
pa
.e
u

20
11
25
1.
37

TP
D
G
ra
ph

eu
ro
pa
.e
u

74
12
9

do
m
ai
nn

am
e.
de

0.
00
17
51

eu
ro
pa
.e
u

13
25
89
4.
51

e-
re
ch
t2
4.
de

59
17
5

to
pl
is
t.c
z

0.
00
07
00

yo
ut
u.
be

13
07
42
7.
57

yo
ut
u.
be

47
74
7

e-
re
ch
t2
4.
de

0.
00
06
88

go
og

le
.d
e

11
96
81
7.
20

to
pl
is
t.c
z

46
79
7

m
ap
y.
cz

0.
00
06
63

bb
c.c

o.
uk

11
94
33
8.
96

go
og

le
.d
e

40
04
1

yo
ur
on

lin
ec
ho

ic
es
.e
u

0.
00
06
56

sp
ie
ge
l.d
e

11
74
62
9.
32

m
ap
y.
cz

38
31
0

eu
ro
pa
.e
u

0.
00
06
40

fr
ee
.fr

11
64
23
7.
86

go
og

le
.it

35
50
4

go
og

le
.it

0.
00
04
44

bu
nd

.d
e

11
58
44
8.
65

ph
oc
a.
cz

30
33
9

yo
ut
u.
be

0.
00
04
37

m
pg

.d
e

11
55
54
2.
20

w
eb
no

de
.cz

28
50
6

go
og

le
.d
e

0.
00
04
20

ad
m
in
.ch

11
53
42
4.
50

fr
ee
.fr

27
42
0

id
ea
l.n

l
0.
00
03
86

ox
.a
c.u

k
11
35
82
2.
35

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:24 P. Boldi et al.
Table

6.
M
ost

relevant
hosts

and
TPD

s
of

gsh-2015
by

diff
erent

centrality
m
easures.

Indegree
PageRank

H
arm

onic
centrality

H
ostG

raph
gm

pg.org
2423978

w
ordpress.org

0.00885
w
w
w
.google.com

18398649.60
w
w
w
.google.com

1787380
w
w
w
.google.com

0.00535
gm

pg.org
17167143.30

fonts.googleapis.com
1715958

fonts.googleapis.com
0.00359

fonts.googleapis.com
17043381.45

w
ordpress.org

1389348
gm

pg.org
0.00325

w
ordpress.org

16326086.35
m
aps.google.com

959919
go.m

icrosoft.com
0.00317

play.google.com
16317377.30

w
w
w
.m

iibeian.gov.cn
955938

sedo.com
0.00192

plus.google.com
16300882.95

w
w
w
.adobe.com

670180
developers.google.com

0.00167
m
aps.google.com

16105556.40
go.m

icrosoft.com
642896

m
aps.google.com

0.00163
w
w
w
.adobe.com

16053489.60
w
w
w
.googletagm

anager.com
499395

support.m
icrosoft.com

0.00146
support.google.com

15443219.60
w
w
w
.blogger.com

464911
w
w
w
.adobe.com

0.00138
instagram

.com
15262622.80

TPD
G
raph

google.com
2174980

google.com
0.01011

google.com
10135724.15

gm
pg.org

2072302
fonts.googleapis.com

0.00628
gm

pg.org
9271735.90

w
ordpress.org

1409846
gm

pg.org
0.00611

w
ordpress.org

8936105.80
fonts.googleapis.com

1066178
sedo.com

0.00369
fonts.googleapis.com

8689428.35
adobe.com

770597
adobe.com

0.00307
adobe.com

8611284.30
m
icrosoft.com

594962
w
ordpress.org

0.00301
m
icrosoft.com

8491543.60
blogger.com

448131
m
icrosoft.com

0.00277
w
ordpress.com

8248496.12
w
ordpress.com

430419
blogger.com

0.00121
yahoo.com

8176168.72
yahoo.com

315723
netw

orkadvertising.org
0.00120

creativecom
m
ons.org

7985426.37
statcounter.com

313978
61.237.254.50

0.00105
m
ozilla.org

7960620.27

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

BUbiNG: Massive Crawling for the Masses 39:25

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0 1 10 10
2

10
3

10
4

ra
n
k

outdegree

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0 1 10 10
2

10
3

10
4

ra
n
k

outdegree

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0 1 10 10
2

10
3

10
4

ra
n
k

outdegree

Fig. 10. Outdegree plots for uk-2014, gsh-2015 and eu-2015 (cumulative degree/rank plots).

perform near-duplicate detection, cannot in principle be compared directly to either column, as
detecting near-duplicates alters the crawling process, but as it is easy to see the statistics are all
very close. The main change we can observe is the constant increase of redirections (3XX). It would
have been interesting to compare interesting structural properties of the IRLBot and Mercator
datasets (harmonic diameter, etc.) with our crawls, but neither crawl is publicly available.

8 CONCLUSIONS
In this paper we have presented BUbiNG, a new distributed open-source Java crawler. BUbiNG is
orders of magnitudes faster than existing open-source crawlers, scales linearly with the number of
agents, and will provide the scientific community with a reliable tool to gather large data sets.

The main novel ideas in the design of BUbiNG are:

• a pervasive usage of modern lock-free data structures to avoid contention among I/O-bound
fetching threads;

• a new data structure, the workbench, that is able to provide in constant time the next URL to
be fetched respecting politeness both at the host and IP level;

• a simple but effective virtualizer—a memory-mapped, on-disk store of FIFO queues of URLs
that do not fit into memory.

BUbiNG pushes software components to their limits by using massive parallelism (typically,
several thousand fetching threads); the result is a beneficial fallout on all related projects, as
witnessed by several enhancements and bug reports to important software libraries like the Jericho
HTML parser and the Apache Software Foundation HTTP client, in particular in the area of object
creation and lock contention. In some cases, like a recent regression bug in the ASF client (JIRA issue
1461), it was exactly BUbiNG’s high parallelism that made it possible to diagnose the regression.

Future work on BUbiNG includes integration with spam-detection software, and proper handling
of spider traps (especially, but not only, those consisting in infinite non-cyclic HTTP-redirects); we
also plan to implement policies for IP/host politeness throttling based on download times and site
branching speed, and to integrate BUbiNG with different stores like HBase, HyperTable and similar
distributed storage systems. As briefly mentioned, it is easy to let BUbiNG follow a different priority
order than breadth first, provided that the priority is per host and per agent; the latter restriction
can be removed at a moderate inter-agent communication cost. Prioritization at the level of URLs
requires deeper changes in the inner structure of visit states and may be implemented using, for
example, the Berkeley DB as a virtualizer: this idea will be a subject of future investigations.

Another interesting direction is the integration with recently developed libraries which provides
fibers, a user-space, lightweight alternative to threads that might further increase the amount of
parallelism available using our synchronous I/O design.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:26 P. Boldi et al.

ACKNOWLEDGMENTS
We thank our university for providing bandwidth for our experiments (and being patient with
bugged releases). We thank Giuseppe Attardi, Antonio Cisternino andMaurizio Davini for providing
the hardware, and the GARR Consortium for providing the bandwidth for experiments performed
at the Università di Pisa. Finally, we thank Domenico Dato and Renato Soru for providing the
hardware and bandwidth for the iStella experiments.

The authors were supported by the EU under EU-FET Grant GA 288956 “NADINE”.

REFERENCES
[1] 1996. Internet Archive website. http://archive.org/web/web.php. (1996).
[2] 2003. Heritrix Web Site. https://webarchive.jira.com/wiki/display/Heritrix/. (2003).
[3] 2009. The ClueWeb09 Dataset. http://lemurproject.org/clueweb09/. (2009).
[4] 2009. ISO 28500:2009, Information and documentation - WARC file format. http://www.iso.org/iso/catalogue_detail.

htm?csnumber=44717. (2009).
[5] Dimitris Achlioptas, Aaron Clauset, David Kempe, and Cristopher Moore. 2009. On the bias of traceroute sampling:

Or, power-law degree distributions in regular graphs. Journal ACM 56, 4 (2009), 21:1–21:28.
[6] Sarker Tanzir Ahmed, Clint Sparkman, Hsin-Tsang Lee, and Dmitri Loguinov. 2015. Around the web in six weeks:

Documenting a large-scale crawl. In Computer Communications (INFOCOM), 2015 IEEE Conference on. IEEE, 1598–1606.
[7] Tim Berners-Lee, Roy Thomas Fielding, and Larry Masinter. 2005. Uniform Resource Identifier (URI): Generic Syntax.

http://www.ietf.org/rfc/rfc3986.txt. (2005).
[8] Burton H. Bloom. 1970. Space-Time Trade-offs in Hash Coding with Allowable Errors. Comm. ACM 13, 7 (1970),

422–426.
[9] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004. UbiCrawler: A Scalable Fully Distributed

Web Crawler. Software: Practice & Experience 34, 8 (2004), 711–726.
[10] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. 2014. BUbiNG: massive crawling for the masses.

In WWW’14 Companion. 227–228.
[11] Paolo Boldi and Sebastiano Vigna. 2013. In-Core Computation of Geometric Centralities with HyperBall: A Hundred

Billion Nodes and Beyond. In Proc. of 2013 IEEE 13th International Conference on Data Mining Workshops (ICDMW 2013).
IEEE.

[12] Paolo Boldi and Sebastiano Vigna. 2014. Axioms for Centrality. Internet Math. 10, 3-4 (2014), 222–262.
[13] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual Web search engine. Computer

Networks and ISDN Systems 30, 1 (1998), 107–117.
[14] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. 1997. Syntactic clustering of the Web. In

Selected papers from the sixth international conference on World Wide Web. Elsevier Science Publishers Ltd., Essex, UK,
1157–1166.

[15] M. Burner. 1997. Crawling Towards Eternity: Building an Archive of the World Wide Web. Web Techniques 2, 5 (1997).
[16] Jamie Callan. 2012. The Lemur Project and its ClueWeb12 Dataset. Invited talk at the SIGIR 2012 Workshop on

Open-Source Information Retrieval. (2012).
[17] Soumen Chakrabarti. 2003. Mining the web - discovering knowledge from hypertext data. Morgan Kaufmann. I–XVIII,

1–345 pages.
[18] Moses Charikar. 2002. Similarity Estimation Techniques from Rounding Algorithms. In STOC. 380–388.
[19] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. 2009. Power-Law Distributions in Empirical Data. SIAM

Rev. 51, 4 (2009), 661–703.
[20] Jenny Edwards, Kevin McCurley, and John Tomlin. 2001. An adaptive model for optimizing performance of an

incremental web crawler. In Proceedings of the 10th international conference on World Wide Web (WWW ’01). ACM,
New York, NY, USA, 106–113.

[21] D. Eichmann. 1994. The RBSE spider: balancing effective search against web load. In Proceedings of the first World
Wide Web Conference. Geneva, Switzerland.

[22] Peter Elias. 1974. Efficient Storage and Retrieval by Content and Address of Static Files. J. Assoc. Comput. Mach. 21, 2
(1974), 246–260.

[23] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L. Wiener. 2003. A large-scale study of the evolution of Web
pages. In Proceedings of the Twelfth Conference on World Wide Web. ACM Press, Budapest, Hungary.

[24] R. Fielding. 1994. Maintaining Distributed Hypertext Infostructures: Welcome to MOMspider. In Proceedings of the 1st
International Conference on the World Wide Web.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

http://archive.org/web/web.php
https://webarchive.jira.com/wiki/display/Heritrix/
http://lemurproject.org/clueweb09/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=44717
http://www.iso.org/iso/catalogue_detail.htm?csnumber=44717
http://www.ietf.org/rfc/rfc3986.txt

BUbiNG: Massive Crawling for the Masses 39:27

[25] Allan Heydon and Marc Najork. 1999. Mercator: A scalable, extensible Web crawler. World Wide Web 2, 4 (April 1999),
219–229.

[26] R. Khare, D. Cutting, K. Sitaker, and A. Rifkin. 2004. Nutch: A flexible and scalable open-source web search engine.
Oregon State University (2004).

[27] Hsin-Tsang Lee, Derek Leonard, Xiaoming Wang, and Dmitri Loguinov. 2009. IRLbot: Scaling to 6 billion pages and
beyond. ACM Trans. Web 3, 3, Article 8 (July 2009), 34 pages.

[28] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. 2007. Detecting near-duplicates for web crawling. In
WWW ’07: Proceedings of the 16th international conference on World Wide Web. ACM, New York, NY, USA, 141–150.

[29] Oliver A. McBryan. 1994. GENVL and WWWW: Tools for Taming the Web. In Proceedings of the first World Wide Web
Conference. 79–90.

[30] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. 2015. The Graph Structure in the Web—
Analyzed on Different Aggregation Levels. The Journal of Web Science 1, 1 (2015), 33–47.

[31] Maged M. Michael and Michael L. Scott. 1996. Simple, fast, and practical non-blocking and blocking concurrent queue
algorithms. In Proceedings of the fifteenth annual ACM symposium on Principles of distributed computing (PODC ’96).
ACM, 267–275.

[32] Seyed M Mirtaheri, Mustafa Emre Dincturk, Salman Hooshmand, Gregor V Bochmann, Guy-Vincent Jourdan, and
Iosif-Viorel Onut. 2013. A Brief History of Web Crawlers. In CASCON.

[33] Gordon Mohr, Michele Kimpton, Micheal Stack, and Igor Ranitovic. 2004. Introduction to Heritrix, an archival quality
web crawler. In Proceedings of the 4th International Web Archiving Workshop (IWAW’04).

[34] Mark Najork and Allan Heydon. 2001. High-Performance Web Crawling. Technical Report 173. Compaq Systems
Research Center.

[35] Marc Najork and Allan Heydon. 2002. High-performance web crawling. In Handbook of massive data sets, James
Abello, Panos M. Pardalos, and Mauricio G. C. Resende (Eds.). Kluwer Academic Publishers, 25–45.

[36] Christopher Olston and Marc Najork. 2010. Web Crawling. Foundations and Trends in Information Retrieval 4, 3 (2010),
175–246.

[37] Brian Pinkerton. 1994. Finding What People Want: Experiences with the WebCrawler. In Proceedings of the 2nd
International World Wide Web (Online & CDROM review: the international journal of), Anonymous (Ed.), Vol. 18(6).
Learned Information, Medford, NJ, USA.

[38] Vladislav Shkapenyuk and Torsten Suel. 2002. Design and Implementation of a High-Performance Distributed Web
Crawler. In In Proc. of the Int. Conf. on Data Engineering. 357–368.

[39] Sebastiano Vigna. 2013. Fibonacci Binning. CoRR abs/1312.3749 (2013).

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

	Abstract
	1 Introduction
	2 Motivation
	3 Related Works
	3.1 Open-source crawlers

	4 Architecture overview
	4.1 The sieve
	4.2 The workbench
	4.3 Fetching threads
	4.4 Parsing threads
	4.5 DNS threads
	4.6 The workbench virtualizer
	4.7 The distributor
	4.8 Configurability
	4.9 URL normalization
	4.10 Distributed crawling

	5 Experiments
	5.1 In vitro experiments: BUbiNG
	5.2 In vitro experiments: Heritrix
	5.3 In vivo experiments
	5.4 Comparison

	6 Three datasets
	6.1 Degreee distribution
	6.2 Centrality

	7 Comparison with previous crawls
	8 Conclusions
	Acknowledgments
	References

