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Abstract

This note argues that when dot-plotting distributions
typically found in papers about web and social networks
(degree distributions, component-size distributions, etc.),
and more generally distributions that have high variabil-
ity in their tail, an exponentially binned version should
always be plotted, too, and suggests Fibonacci binning as
a visually appealing, easy-to-use and practical choice.

1 Introduction

The literature about web and social networks has been in
the last decade literally inundated by dot plots like Fig-
ure 1: for each abscissa x (usually, a degree or a size), a
dot is plotted at coordinates 〈x, y〉, where y the frequency
of the element (nodes, components) with feature x.

Misuses of such graphs have been abundantly described
elsewhere [Willinger et al.:2009, Li et al.:2005]—in par-
ticular, their role in convincing people easily that some
power law would fit the empirical data distribution just
by plotting lines through the “cloud of points” instead of
using some statistically sound test.1

The main problem of such plots is that the tail is, ac-
tually, unfathomable: due to the sparsity and high vari-
ability of the points in the right part of the graph, it is
impossible to infer visually anything about the behavior
of the tail of the distribution.

A sound solution is using a standard statistical
methodology as discussed in detail, for instance,
in [Clauset et al.:2009]: first finding the starting point
by max-likelihood estimation, then computing a p-value,
and finally comparing with other models. Nonetheless,
visual inspection of plots remains useful to get a “gut
feeling” of the behavior of the distribution.

One alternative suggested in [Li et al.:2005] is using size-
rank plots—the numerosity-based discrete analog of the

∗The author has been supported by the EU-FET grant NADINE
(GA 288956).

1Interestingly, the same considerations appear to have been
common knowledge at least a decade ago in other ar-
eas [Hergarten:2002].
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Figure 1: The frequency dot plot of the inde-
gree distribution of a 106 million pages snapshot
of the .uk web crawled in May 2007 (available at
http://law.di.unimi.it/). The line shows a power law
with exponent 1.89.

complementary cumulative distribution function in prob-
ability.2 To each abscissa x we associate the sum of the
frequencies of all data points with abscissa greater than
or equal to x. The plot we now obtain is monotonically
decreasing, there is no cloud of points, and the shape of
the tail will be a straight line if and only if the distribu-
tion is a power law.

The main problem is that people love frequency dot plots,
and it should be relatively easier to convince them to
apply a binning (which, among other things, looks nice)
than change the type of diagram altogether.

2 Fibonacci binning

Fibonacci binning is a simple exponential (or logarithmic,
depending on the viewpoint) discrete binning technique:
bins are sized like the Fibonacci numbers. It displays
nicely on a log-log scale because Fibonacci numbers are
multiplicatively spaced approximately like the golden ra-
tio, and it has the useful feature that the first two bins
are actually data points. This feature comes very handy
as most empirical distributions found in web and social

2Limitations of size-rank plots are discussed in [Hergarten:2002].
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Figure 2: A dot plot of two distribution described
in [Li et al.:2005]. Can you guess which one comes from
a power law?

networks have slightly different behavior on the first one
or two data points.3 Moreover, Fibonacci binning is
less coarse than the common power-of-b binnings (e.g.,
b = 2, 10), which should make the visual representation
more accurate [Virkar and Clauset:2013].

Binning is essential for getting a graphical understand-
ing of the tail of dot plots.4 Consider, for instance, the
famous pathological example shown in Figure 2, which is
discussed in [Li et al.:2005].5 The figure shows two typi-
cal frequency dot plots. The (obvious) reason the exam-
ple is pathological is that the plot looking like a straight
line is a sample from an exponential distribution, whereas
the curved plot is a sample from a power-law distribution.
Of course, you are supposed to think the exact contrary,
and if you’ve seen many dot plots like Figure 1 some rea-
sonable doubts about “visual distribution fitting” using
frequency plots should surface to your mind.

Binning, however, comes to help. By averaging the values
across a contiguous segment of abscissas, we obtain a
more regular set of points (essentially, the midpoints of
the histograms on the same intervals) that we can connect
to get more insight on the actual shape of the curve.
Note that the lines connecting the point are absolutely
imaginary; they’re just a visual clue—they are not part
of the data.

Kernel density estimation is another technique widely
used for this purpose, but it does not really work well
with discrete distributions and in particular with distri-
butions with a “starting point”.

3This issue is actually solved in most papers by not plotting the
value for abscissa zero, which happens automatically if you choose
to plot in log-log scale in any plotting package known to the author.

4Exponential binning is discussed in detail in [Milojević:2010],
where the authors suggest it as a better way to fit power laws, even
with respect to size-rank plots.

5The code to generate the pathological example can be found at
http://hot.caltech.edu/topology/RankVsFreq.m.
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Figure 3: A dot plot of the pathological sample from a
power-law distribution from [Li et al.:2005], its Fibonacci
binning and the original power-law distribution used to
generate the sample.

More in detail, let F0 = 1, F1 = 1, Fn = Fn−1 + Fn−2,6

assume that we have a starting offset s (usually 0 or 1)
and data 〈xi, yi〉 with xi distinct integers satisfying xi ≥
s. The binning intervals [`j . . rj), j ≥ 0, are then built
starting at s using lengths F0, F1, F2, . . . :

[`0 . . r0) = [s+ F1 − 1 . . s+ F2 − 1)

[`1 . . r1) = [s+ F2 − 1 . . s+ F3 − 1)

. . .

[`j . . rj) = [s+ Fj+1 − 1 . . s+ Fj+2 − 1)

. . .

Note that rk− `k = Fk, and that if s = 1 the extremes of
the intervals are exactly consecutive Fibonacci numbers.
The resulting binned sequence 〈pk,mk〉, k ≥ 0 is

〈pk,mk〉 =

〈
`k +

Fk − 1

2
,

1

Fk

∑
xi∈[`k ..rk)

yi

〉
.

Figures 3 and 4 show the result of Fibonacci binning on
the pathological curves: the truth is easily revealed, and
we obtain a very close fit with the distribution used to
generate the sample.

We remark that, in fact, the pathological power-law curve
is not so pathological: plfit7 provides a best max-
likelihood fitting starting at 100 with α = 2.59 and a
p-value 0.154± 0.01, thus essentially recovering the orig-
inal distribution, which has exponent 2.5.

6It is also customary to use F0 = 0, F1 = 1 as initial condi-
tion for the Fibonacci numbers, but our choice makes the following
notation slightly easier to read.

7https://github.com/ntamas/plfit
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Figure 4: A dot plot of the pathological sample from
an exponential distribution from [Li et al.:2005], its Fi-
bonacci binning and the original exponential distribution
used to generate the sample.
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Figure 5: The plot of Figure 1 with an overlapped Fi-
bonacci binning, displaying previously undetectable con-
cavity.
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Figure 6: The size-rank plot of the data displayed in
Figure 1, showing a clear concavity.

Getting back to our motivating example (Figure 1), Fig-
ure 5 shows the same data with an overlapped Fibonacci
binning, and Figure 6 shows the associated size-rank plot.
The apparent fitting of the power law is now clearly re-
vealed as an artifact of the frequency plot, and the change
of slope actually makes unlikely the existence of a fat tail.
Not surprisingly, trying to fit a power law with plfit

gives a p-value of 0± 0.01.

3 Conclusions

We hope to have convinced the reader of the advantages
of Fibonacci binning. While cumulative plots remain a
somewhat more reliable and principled visual tool, and
proper statistical testing is irreplaceable, frequency plots
are here to stay and Fibonacci binning can help to make
some sense out of them.

A Ruby script that computes the Fibonacci binning of a
list of values is available from the author.8 The site of the
Laboratory for Web Algorithmics9 provides examples of
frequency plot with Fibonacci binning and size-rank plots
for dozens of networks, ranking from Wikipedia to web
snapshots; it is a good place to have a taste of the visual
results.
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tions in information science: Making the case for log-
arithmic binning. Journal of the American Society
for Information Science and Technology, 61(12):2417–
2425, 2010.

[Virkar and Clauset:2013] Yogesh Virkar and Aaron
Clauset. Power-law distributions in binned empirical
data. CoRR, abs/1208.3524, 2013.

[Willinger et al.:2009] Walter Willinger, David Alderson,
and John C. Doyle. Mathematics and the Internet: A

8http://vigna.di.unimi.it/fbin.rb
9http://law.di.unimi.it/

3

http://vigna.di.unimi.it/fbin.rb
http://law.di.unimi.it/


source of enormous confusion and great potential. No-
tices of the American Mathematical Society, 56(5):586–
599, 2009.

4


	Introduction
	Fibonacci binning
	Conclusions

