Fibrations of Graphs
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Abstract

A fibration of graphs is a morphism that is a local isomorphism of in-neighbourhoods,
much in the same way a covering projection is a local isomorphism of neighbourhoods.
This paper develops systematically the theory of graph fibrations, emphasizing in
particular those results that recently found application in the theory of distributed
systems.

Keywords: graph fibrations, graph coverings, graph factorizations.

Contents
1 Introduction 2
2 Definitions and basic properties 4
2.1 Graph-theoretical definitions . . . . . . . . .. .. ... L oL 4
2.2 Fibrations and coverings . . . . . . . . ... L L oL 5
2.3 Groups, fibrations and automorphisms . . . . .. ... ... . 0L, 8
2.4 Some properties of fibrations between finite graphs . . . . . . . .. ... .. 10
2.5 Anapplication . . . . ... 11
3 Universal fibrations and coverings 12
3.1 Universal total graphs . . . . . . . . ... .. .. ... .. ... . 12
3.2 Universal coverings . . . . . . . . . . . .. o 13
3.3 Nodes with the same universal total graph . . . . . .. ... ... ... ... 14
4 Minimal fibrations 16
4.1 Constructing minimum bases . . . . . . . .. ... oL 19
5 Graphs fibred over bouquets 21
5.1 Factorization lemmata . . . . . . . . ... ... L 22
52 Regular Graphs . . . . . . . ... 25
5.3 Schreier Graphs . . . . . . . . L 26
6 A categorical standpoint 28
6.1 Pullbacks . . . . . . . .. 30
6.2 The category of fibrations over a given base . . . . . . . ... ... .. ... 33
6.3 Counting minimal fibrations of the cycle . . . . . . ... ... ... .. ... 35

*Dipartimento di Scienze dell’Informazione, Universita degli Studi di Milano, Via Comelico 39/41, 20135
Milano MI, Italy. email: {boldi,vigna}@dsi.unimi.it.



7 Open problems 38

1 Introduction

A morphism of (directed multi)graphs ¢ : G — B is a fibration when each arc of B can be
uniquely lifted at every node in the fibre of its target. This simple definition implies that
locally ¢ is an isomorphism of in-neighbourhoods. In this paper we develop the theory
of graph fibrations, with a special emphasis on results related to some applications in
computer science; we shall also pay attention to the mutual relations between fibrations,
group actions and categorical constructions.

Historically, the definition of graph fibration can be traced back to the first papers
about fibrations between categories, which were in turn inspired by the notion of fibration
in homotopy theory. John Gray [13], in one of the oldest paper on the subject, attributes
the definition to Alexandre Grothendieck |15, 1|, who devised it at the end of the '50s
in connection with his work on the foundations of algebraic geometry. A graph is just a
“category without composition and identities”, and thus the definition of fibration between
categories applies to graphs just by taking the free categories they generate (this point
will be fully explained in Section 6). The definition we shall use is exactly an elementary
restatement of the categorical notion.

To be true, the genealogy is a bit more involved. Independently, at the end of the '60s,
Horst Sachs introduced the concept of divisor (Teiler) of a graph [29, 30, 25|, which was
intensively studied by the community working on algebraic graph theory (for a detailed
description and bibliography, see Chapter 4 of [11]). In our terminology, a (strongly con-
nected) graph B is a rear divisor of a graph G exactly when there is a fibration ¢ : G — B,
but this fibration is not part of the definition, and in general there are many different
fibrations between a graph and one of its rear divisors (dually for front divisors and opfi-
brations). One could say that divisors are to fibrations as partitions of the integers are to
functions between finite sets.

Divisors can be used to factor the characteristic polynomial of a graph (i.e., the char-
acteristic polynomial of its adjacency matrix), as it can be shown that the characteristic
polynomial of B divides the characteristic polynomial of G (and the quotient has inte-
ger coefficients). The categorical and graph-theoretical communities seem to have never
been aware of the relation between the two concepts (of course, the connection between
divisibility of undirected graphs and topological coverings was known at least since [29]).

In the early '70s, Allen Schwenk [32] (building on a result by Abbe Mowshowitz [22])
introduced the notion of equitable partition of the vertices of an undirected graph G, and
showed that the characteristic polynomial of G is divisible by the characteristic polynomial
of a certain matrix induced by the partition (for instance, the degree partition of G 19|
is equitable). Indeed, such a matrix is the adjacency matrix of a front divisor of G, but
Schwenk seems to be unaware of this fact (irony of fate, he just missed it, as he reviewed [31]
Petersdorf and Sachs’ next paper [26] on a connected subject).

A related research area, started by Tomaz Pisanski and Joze Vrabec [27], is concerned
with the concept of graph bundle, a topological (as opposed to categorical /combinatorial)
generalization of the notion of covering. Essentially, a graph bundle with base G and fibre
F (both being undirected graphs) is the 1-skeleton of a topological locally trivial bundle
over B with fibre F' and structure group Aut(F). This kind of bundles are a particular
case of (categorically defined) fibrations between symmetric reflexive graphs, as we shall



briefly discuss in Section 6; in this case, the underlying combinatorial structure is very
different from ours. It is interesting to note that by a mysterious coincidence Younki Chae,
Jin Ho Kwak and Jaeun Lee [10], starting from Schwenk’s work, studied the problem of
computing the characteristic polynomial of a graph bundle, rediscovering in the case of a
discrete fibre Sach’s original result [30] that the characteristic polynomial of a graph divides
the characteristic polynomial of its covering spaces.

Our main motivation for the study of graph fibrations comes from the theory of dis-
tributed systems. In the early ’80s, a seminal paper by Dana Angluin |2| introduced
undirected graph coverings (and in particular, universal coverings) as a way for proving
impossibility results on bidirectional anonymous networks (viz., networks where all pro-
cessors are identical and start from the same state). The paper also posed a number of
interesting mathematical questions, leading, for instance, to Frank Leighton’s proof of An-
gluin’s conjecture that every two undirected finite graphs with the same universal covering
have a common finite cover [19]. Eventually, a complete characterization by means of undi-
rected graph coverings was obtained by Masafumi Yamashita and Tiko Kameda |37, 36].

In the last years, it has been realized that graph coverings are no longer sufficient to
solve analogous problems in a more general setting, that is, when the processors of a network
are only able to transmit messages by broadcast or links are unidirectional. It has turned
out that the right mathematical notion in this case is exactly that of fibration; indeed,
fibrations have been used to solve completely problems such as leader election [5] and
function computation [6] in general anonymous networks. In turn, these new applications
have stimulated new research and created new mathematical problems, which are (at least
partially) addressed in this paper.

We start by summarizing the graph-theoretical definitions and basic properties we are
going to use. Then, in Section 3 we discuss universal fibrations and coverings. The theory
of minimum bases is developed in Section 4, where we show that having the same minimum
base is equivalent to having the same universal total graphs. Each section is completed by
a short informal discussion of the related applications to distributed systems. Section 5
studies graphs fibred over bouquets. Finally, in Section 6 we develop a general categorical
framework, showing in particular that fibrations are preserved by pullbacks. This allows
to prove several theorems about common fibrations and coverings of graphs. Moreover,
we give a representation theorem in terms of functor categories that allows one to study
counting problems, and by way of example we count the number of nonisomorphic minimal
fibrations of a bidirectional cycle.

A note is needed about the meaning of the word “graph” in this paper. We adopt
Berge’s point of view [4]: all graphs are directed, possibly infinite, and can possess loops
and multiple arcs. When necessary, inside this larger class we single out separated graphs
(that do not possess multiple arcs), loopless graphs, and so on. We also discuss undirected
graphs under the form of symmetric graphs, that is, graphs with a specified involution on the
arc set that exchanges source and target of each arc (unfortunately, the word “symmetric”
has sometimes been used with different meanings in the graph-theoretical literature). Every
undirected graph has a symmetric representation, but the converse is not true, as there
are two kind of loops: the ones that are fixed by the symmetry and the ones that are not.
There is no way of translating this difference in the language of undirected graphs, and this
is probably the reason why loops have always been so disturbing in the study of coverings
(a full discussion of this issue can be found at the end of Section 5).

We consider symmetry (not a property of but rather) a structure on a graph. As a con-



sequence, morphisms between symmetric graphs must preserve symmetry. The definition
of symmetric fibration and covering we use (which turn out to be equivalent) are naturally
induced by this point of view. Note that, whenever fit, we shall draw an undirected edge
in place of a pair of opposite directed arcs (even when the graph is not symmetric).

2 Definitions and basic properties

2.1 Graph-theoretical definitions

A (directed multi)graph G is defined by a set Ng of nodes and a set Ag of arcs, and by
two functions sg,te : A — Ng that specify the source and the target of each arc (we
shall drop the subscripts whenever no confusion is possible). We use the notation G(z,y)
for denoting the set of arcs from x to y, that is, the set of arcs a € Ag such that s(a) =z
and t(a) = y; the arcs in G(x,y) are said to be parallel to one another. A loop is an arc
with the same source and target. Following common usage, we denote with G(—, x) the set
of arcs coming into x, that is, the set of arcs a € Ag such that t(a) = z, and analogously
with G(z, —) the set of arcs going out of . A graph is locally finite if G(x,—) and G(—, z)
are finite for every node x.

A symmetric graph is a graph endowed with a symmetry, that is, an involution (a self-
inverse bijection) (7) : Ag — Aq such that s(a) = t(a) (and consequently t(a) = s(a)) for
all arcs a € Ag. A semi-edge of a symmetric graph is a loop a such that @ = a. Given a
graph G, we define its (formal) symmetrization Sym(G) as the graph obtained by adding
for each arc a € G(x,y) a new arc a going from y to z, with symmetry defined in the
obvious way.

A graph G is j-inregular (k-outregular) if |G(—,z)| = j (|G(z,—)| = k, respectively).
A j-inregular, k-outregular graph is said to be (j, k)-regular. For finite or symmetric graphs
(4, k)-regularity implies j = k, and when j = k we simply say that G is j-regular.

A path (of length n) is a sequence xgaixi - Tp—1anTy, Where z; € Ng, aj € Ag,
s(a;) = xz;j—1 and t(aj) = x;. We shall usually omit the nodes from the sequence when
at least one arc is present. If G is symmetric, a path is called symmetrically stuttering
(or, simply, stuttering) iff it contains a subpath of the form aa; a nonstuttering walk of a
graph G is a nonstuttering path of Sym(G). Since we shall only be concerned with walks
of this kind, we shall drop the adjective “nonstuttering” in the sequel. We shall say that
G is (strongly) connected iff for every choice of x and y there is a walk (path) from z to y;
the diameter Dg of a strongly connected graph is the maximum length of a shortest path
between two nodes.

We shall occasionally deal with (arc-)coloured graphs: a coloured graph (with set of
colours () is a graph endowed with a colouring function v : Ag¢ — C. For symmetric
graphs, we require that there is an involution (7) : ¢ — C' such that v(@) = v(a). A
(coloured) graph is separated iff it has no parallel arcs (with the same colour). The name
originates from the fact that such graphs are separated for the double negation topology
in the topos of (coloured) graphs—see [34].

A graph morphism £ : G — H is given by a pair of functions £y : Ng — Npg and
&a: Ag — Ap commuting with the source and target maps, that is, sgo&s = &y o0 sg and
toéa = E&n ote (again, we shall drop the subscripts whenever no confusion is possible).
In other words, a morphism maps nodes to nodes and arcs to arcs in such a way to preserve
the incidence relation. (In the case of coloured graphs, we require {4 to commute with the
colouring function.) A morphism between symmetric graphs is symmetric iff it commutes



with the symmetries. A morphism is epimorphic (or an epimorphism) iff £ and £4 are
both surjective.

An in-tree is a graph with a selected node r, the root, and such that every other node
has exactly one directed path to the root; if ¢ is a node of an in-tree, we sometimes use
t — r for denoting the unique path from ¢ to the root. If T is an in-tree, we write h(7T") for
its height (the length of the longest path). Finally, we write T' | k for the tree T truncated
at height k, that is, we eliminate all nodes at distance greater than k from the root. A
(symmetric) tree is a (symmetric) graph with a selected node, the root, such that there
is exactly one nonstuttering walk (path) from any node to the root: the notions of height
and truncation carry on to this case. Unless otherwise stated, morphisms between trees
are required to preserve the root.

2.2 Fibrations and coverings

The central concept we are going to deal with is that of graph fibration, a particular kind
of graph morphism induced by the notion of fibration between categories (see Section 6).

Definition 2.1 A fibration between graphs G and B is a morphism ¢ : G — B such that
for each arc a € Ap and for each node x € N¢ satisfying ¢(x) = t(a) there is a unique arc
a® € Ag (called the lifting of a at x) such that ¢(a®) = a and t(a”) = z.

We inherit some topological terminology. If ¢ : G — B is a fibration, G is called the total
graph and B the base of ¢. We shall also say that G is fibred (over B). The fibre over
a node x € Np is the set of nodes of G that are mapped to z, and shall be denoted by
o~ Y(x). A fibre is trivial if it is a singleton, that is, if [¢~!(x)| = 1. A fibration is nontrivial
if at least one fibre is nontrivial, ¢rivial otherwise; it is proper if all fibres are nontrivial.

There is a very intuitive characterization of fibrations based on the concept of local
in-isomorphism. An equivalence relation ~ between the nodes of a graph G satisfies the
local in-isomorphism property if the following holds:

Local In-Isomorphism Property: If x ~ y there exists a (colour-preserving, if
G is coloured) bijection ¢ : G(—,z) — G(—,y) such that s(a) ~ s(¢(a)), for all
a€ G(—,x).

The following proposition shows that fibrations and epimorphisms whose fibres satisfy the
previous property are naturally equivalent:

Theorem 2.1 Let G be a graph. Then:

1. if ¢ : G — B is a fibration, then the equivalence relation on the nodes of G whose
equivalence classes are the nonempty fibres of ¢ satisfies the local in-isomorphism

property;

2. if ~ is a relation satisfying the local in-isomorphism property, then there exists a
graph B and an epimorphic fibration ¢ : G — B whose fibres are the equivalence
classes of ~.

Proof. 1. For each z,y € Ng such that z ~ y (i.e., (x) = ¢(y)) define ¥ : G(—,z) —

G(~y) by letting (a) = p(a)". Then we obtain p(s(4(a))) = ¢(s(¢(a)")) = s(p(p(a))) =
s(e(a)) = ¢(s(a)), hence s(¢(a)) ~ s(a), as required.



2. Let the bijections v, ,, whose existence is guaranteed by the local in-isomorphism
property, be fixed for every x,y such that  ~ y. Define B as having set of nodes Ng/~,
fix a choice of representatives for ~, and set

B([z],[y]) = > G(z),

z€[x]

where z and y run through the representatives. The definition does not depend on the
choice of the representatives because of the local in-isomorphism property.

The map ¢ is defined on the nodes as ¢(x) = [z], and on the arcs as follows: let a be
an arc of G and t(a) ~ y, where y is a representative; then,

(P(a) = wt(a),y (a)

By using the local in-isomorphism property it is now straightforward to show that ¢ is an
epimorphic fibration. 1

Another possible, more geometric way of interpreting the definition of fibration is that
given a node z of B and path 7 terminating at x, for each node y of G in the fibre of =
there is a unique path terminating at y that is mapped to m by the fibration; this path is
called the lifting of w at y, and it is denoted by 7¥. In Figure 1, fibres are represented by
dotted ovals (not all nodes of a fibre are shown, though), and we indicate how a path can
be lifted at two different points of a fibre. Observe that loops are not necessarily lifted to
loops.

Figure 1: Different liftings of a path.

It is worth noticing that some simple path-lifting techniques give the following propo-
sition, whose proof is remarkably similar to its topological counterpart.

Proposition 2.1 A fibration with strongly connected base and nonempty total graph is
an epimorphism.

Proof. Let ¢ : G — B be a fibration with B strongly connected. Let x be a node of B,
7 be a path from z to a node y that is in the image of ¢ (at least one such node exists,



being G nonempty), and z be an element of the fibre of y. Then the lifting 7* starts from
a node in the fibre of x. Surjectivity on arcs follows directly by lifting. 1

A covering projection is a special kind of fibration, where each arc can also be lifted uniquely
from its tail; this fact can be seen as the categorical dual of the local in-isomorphism
property—more formally:

Definition 2.2 An opfibration between graphs G and B is a morphism ¢ : G — B such
that for every arc a € Ap and every node x € Ng satisfying p(z) = s(a), there is a unique
arc *a € Ag (called the oplifting of a at z) such that p(*a) = a and s(*a) = z. A covering
projection is a fibration that is also an opfibration.

If a covering projection ¢ : G — B exists, G is said to be a covering of B. In the case
of coverings, we have a local isomorphism property that gives a bijective correspondence
between the whole (disjoint) neighbourhoods of two nodes in the same fibre (but note that
Theorem 2.1 does not generalize—the map one obtains is a fibration, but not in general a
covering projection). Covering projections enjoy the following property:

Proposition 2.2 A covering projection ¢ : G — B with connected base and nonempty
covering is an epimorphism; moreover, the cardinality of all fibres is the same.

Proof. The first part follows as in the proof of Proposition 2.1, using walks instead of
paths. Moreover, for every pair of nodes z and y of B, the liftings of a walk from y to x at
every node in the fibre of z induce an injection p=1(z) — ¢ ~1(y), so |~ (z)] < |1 (y)].
]
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Figure 2: An eight-cycle covering a four-cycle.

The third, and last kind of map we study is strictly related to coverings of undirected
graphs:

Definition 2.3 A covering projection ¢ : G — B between two symmetric graphs is a
symmetric covering projection if and only if it commutes with the symmetries, that is, for
all a € Ag we have p(a) = ¢(a).

An analogous definition for fibrations would lead to the same class of maps, since, as it
is easy to show, any symmetric fibration is a covering projection (we shall give a very
general categorical proof of this fact in Section 6). It is important to note that “classical”
coverings [14| between loopless separated undirected graphs are symmetric coverings in
the above sense (assuming undirected graphs are represented as symmetric digraphs), and



viceversa. However, the situation gets subtler in the case loops are present. This point will
be fully discussed in Section 5.

2.3 Groups, fibrations and automorphisms

There is an important relation between fibrations and actions over G. A left action G :
I'x G — G of a group I' on a graph G is a group homomorphism I"' — Aut(G). The
action is said to be faithful if the homomorphism is injective; all actions in this paper are
such. We denote the action by left juxtaposition, and ambiguously leave the action name
partially unspecified.

The action G induces an equivalence relation both on the nodes and on the arcs of
G, whose classes (the orbits) are denoted by I'(x) or I'(a). Note that if =,y are two nodes
of G belonging to the same orbit (i.e., gr = y for some g € I'), then the action of g
gives a bijection between G(—,z) and G(—,y) that fulfills the requirements of the local
in-isomorphism property; thus, by Theorem 2.1, G induces a fibration ¢ : G — Br, where
Br is a graph having as node set the set of orbits of rG and as many arcs from orbit I'(z)
to orbit I'(y) as the arcs coming into an element of I'(y) from all elements of I'(x). We say
that ¢ is associated with 1G. Not all fibrations are associated with an action: a cubic (i.e.,
3-regular) graph with trivial automorphism group is fibred over a graph with one node and
three loops, but it has no nontrivial associated fibrations.

Note that ¢ is in general not unique, as it depends, for every x and y, on the element of I
that is chosen to induce the local in-isomorphism between G(—,x) and G(—,y). Moreover,
between G and Br there could exist other fibrations that cannot be constructed in this way.
Even more is true: some, but not all, of the fibrations associated to an action could happen
to be covering projections, as one can easily see by considering the fibrations associated
with the action of the automorphism group of a bidirectional 3-cycle.

There is, of course, a more standard object associated to rG, viz., the quotient graph
G/T', whose nodes and arcs are the orbits of nodes and arcs of G under the action rG.

An action is said to be free or semiregular iff for all nodes z,y there is at most one
g € T such that gr = y (note that this fact implies the same for arcs). Equivalently, one
can require that no element of I'\ {1} has fixpoints. The quotient projection I : G — G/I’
is a covering projection under the hypothesis that G is free. Conversely, if G is connected
and the map I' is a covering projection then G is free.

The action rG induces an epimorphism « : Br — G/I', which is the identity on the
nodes and maps an arc a to I'(a) (recall that a is also an arc of G). The following commu-
tative diagram shows the relation between the aforementioned maps:

o

Br

It is possible to characterize the actions for which « is an isomorphism, as follows:

Proposition 2.3 The map « : Br — G/I is an isomorphism iff the action G satisfies the
following property: if g € T fixes z, then it is the identity on G(—, z) (i.e., it fixes pointwise
the arcs coming into ).

Proof. First of all, note that « is always surjective on the arcs, and trivially bijective on
the nodes. If G satisfies the abovementioned property, then for every pair of arcs a,b of



Br such that I'(a) = T'(b) we have ga = b for some g € I', and thus, by hypothesis, a = b,
since they have common target.

On the other hand, if « is an isomorphism and there is a g # 1 that fixes  but it
is not the identity on G(—,z) we have ga = b for some a,b € G(—,z), so I'(a) = T'(b),
contradicting the injectivity of a. 1

As we already remarked, the fibrations associated with an action need not be covering
projections, in general. However, this is true if pG is free, because in this case by the
previous proposition we have ¢ = a~! oI, and coverings compose. Note that the freeness
hypothesis yields also the uniqueness of ¢ (there is at most one element of the group that
can induce a local in-isomorphism).

One could wonder whether covering projections are associated to free actions only,
but this is false: the automorphism group of a complete graph acts nonfreely, yet an
associated fibration is a covering projection. A weaker conjecture could sound as follows:
every covering projection associated to an action is also associated to a free action (having
isomorphic base). This can also be shown false, by the following argument: Petersen’s
graph (or, more precisely, its representation as a symmetric graph) covers a 3-bouquet
by means of a covering projection associated with the action of the automorphism group;
nonetheless, no free action can have a single node orbit, for otherwise the graph would be
a Cayley graph (see Section 5) by Sabidussi’s Theorem.

However, there is a special case in which we can reverse the implication; we call an au-
tomorphism of G node-trivial iff it acts as the identity on the nodes (such an automorphism
may only permute parallel arcs).

Proposition 2.4 Let G be a connected graph. If I' is cyclic, no g € I'\ {1} is node-trivial
and ¢ is a covering projection then G is free.

Proof. Let g be a generator of I'. Assume by contradiction that the action is not free;
then there is a node = of G and a least k > 0 such that ¢g*z = z and ¢* # 1. Thus, the
orbit of & contains k nodes. Since ¢ is a covering projection, all its fibres contain k£ nodes,
hence ¢* is node-trivial, which fact is absurd. I

The previous proposition happens to be particularly useful when the action is generated by
a single automorphism of G. (Note that for separated graphs the node-triviality hypothesis
can be dropped.) Finally, if G is symmetric and G, besides being free, respects the

symmetry of G (i.e., ga = ga for all ¢ € I and a € Ag), the quotient graph is endowed
with a natural symmetry, and the associated covering projection is symmetric. The reader
should note that there are symmetric free actions that do not correspond to any “undirected”
free action as defined usually [14]|. For instance, Aut(K3) acts freely in our sense on Ky
(seen as a symmetric graph), giving as quotient a single semi-edge. Correspondingly, the
unique morphism from K to the quotient is a symmetric covering.

The fact that actions on a graph induce divisors was noted by Petersdorf and Sachs [26],
and rediscovered by Schwenk [32]. Jonathan Gross and Thomas Tucker [14] study free
actions on undirected graphs, and call regular a covering projection that is the quotient
projection induced by a free action. In this case, G/I" and Br coincide by Proposition 2.3,
so in our terminology a covering projection is regular iff it is associated with a free action.



2.4 Some properties of fibrations between finite graphs

Sometimes, in the finite case, it is possible to derive special properties of a fibration ¢ :
G — B as consequences of properties of the total graph G (and of some connectedness
assumptions on B). This is most useful in applications, and we collect here three results
along this line. We say that a graph is coloured deterministically iff the restriction of the
colouring function to G(z, —) is injective for all nodes z, that is, iff the automaton with
transition graph G is deterministic.

Proposition 2.5 If G is a finite deterministically coloured graph, and B is strongly con-
nected, then every colour preserving fibration ¢ : G — B is a covering projection.

Proof. Let z and y be any pair of nodes of B. One can easily build an injection from the
fibre of y to the one of x by lifting a path connecting x to y at each element of the fibre of y
and taking the starting node of the resulting path. This association is necessarily injective,
for otherwise two arcs with the same label should exit from a node along the path. This
implies [0~ (y)| < |~ !(z)| for all z and y, so every fibre has the same cardinality k.

Let now a be an arc from x to y. Then a is lifted k£ times along the fibre over y, and
this k arcs must start from & distinct nodes in the fibre over x (by determinism, no two
arcs with the same colour can exit from the same node). By pigeonholing this implies that
a can also be uniquely oplifted. I

Proposition 2.6 If G is a finite symmetric deterministically coloured graph, and B is
strongly connected, then for every colour preserving fibration ¢ : G — B we have that B
is endowed with a symmetry, and ¢ is a symmetric covering projection.

Proof. By Proposition 2.5, ¢ is certainly a covering. We have to show that B is a
symmetric coloured graph, and that ¢ commutes with the symmetries of G and B.

Consider an arc a of B going from x to y. Let z be an element of the fibre over y,
and @ the corresponding lifting of a. Then we define @ = ¢(@?); in other words, we lift
a, we take the symmetric in G, and we map it with ¢ in B; note that this process is not
dependent on the choice of z, for otherwise G would not be deterministically coloured.

The symmetry we have defined on B is an involution commuting with the symmetry
on the colours, as for any arc a of B

(@) = (p(@)) = (@) = (@) =1(p(@)) =(a).
The fact that ¢ is a symmetric covering is now trivial, since by definition

(@) = p(e(@) ) = Ba). 1

Proposition 2.7 If G is a finite symmetric graph and B is connected, then given fibrations
©,% : G — B we have |p~!(z)| = |¢~!(z)| for all nodes z of B.

Note that the fibrations are not assumed (and are not necessarily) symmetric. The proof
of the previos proposition is based on the following (trivial) lemma:

Lemma 2.1 Let ¢ : G — B be a fibration, where G is a symmetric graph. For all nodes z

and y of B let dyy = |{a € Ap | s(a) = x and t(a) = y}|. Then |1 (z)|dsy = |7 (y)|dyz
holds for all z,y € Np.

10



Proof (of Proposition 2.7). Let k be the number of nodes of B, and m1, mq, ..., my the
cardinality of the fibres of ¢ : G — B. Since B has at least k — 1 distinct (unordered) pairs
of connected nodes (by connection), the previous lemma gives us at least k— 1 independent
homogeneous linear constraint on the m;’s. Then the equation mi +mg+---+my = |Ng|
forces the system to have at most one solution. I

2.5 An application

Our study of graph fibrations was inspired by a problem in distributed computing. Consider
a finite strongly connected graph G, whose nodes we shall call processors. Each processor
has an internal state belonging to a set X, and unlimited computational power. During
a step of computation each processor changes its state depending on its own state and on
the states of its in-neighbours, that is, the arcs represent unidirectional links along which
a processor transmits its state (the change of state may also depend on the colours of the
arcs; more precisely, the transition function depends on the multiset of pairs (¢, x), where
c is the colour of an arc coming into a processor and x the state of the processor at the
other end). All processors change state at the same time.

One of the main problems of such distributed networks is to establish which configura-
tions of states can be reached when all processors start from the same state and run the
same algorithm, or, as usually stated, when the network is anonymous (or uniform). The
main point to be noted here is that, under such constraints, the existence of a fibration
G — B forces all processors in the same fibre to remain always in the same state.

This fact is of particular importance for a number of problems, for instance, the paradig-
matic election problem, which asks for an algorithm leaving the network in the following
state: exactly one processor in a state b (elected), and all other processors in a state a
(non-elected). It is clear that if a proper fibration G — B exists, no algorithm will ever
be able to solve this problem on G. The study of universal total graphs, carried out in the
following section, has made it possible to turn this condition into a necessary and sufficient
one.

The study of (symmetric) coverings is fundamental for the classification of graphs that
admit election algorithms under certain assumptions on the communication primitives.
Assume for instance that we have a deterministically coloured graph, but we want to write
an election algorithm working independently of any particular colouring. In a real-world
model this corresponds, using a simple emulation algorithm, to the assumption that each
processor is able to distinguish its outgoing links, that is, it is able to send a specific,
different message along different links.

We know that, for each particular colouring, election is possible iff the resulting coloured
graph has no proper fibration. On the other hand, we have just shown that such fibrations
will really be coverings; thus, the existence of a colouring of the graph inducing a proper
fibration shows that the graph is a proper covering. But, conversely, a graph that is a proper
covering has a deterministic colouring inducing a proper fibration (it can be obtained by
colouring deterministically the projection base and lifting the colours—mnote that to do this
a divisor would not suffice: we actually need a graph morphism), whence we conclude
that the networks admitting an election algorithm with the assumption of distinguished
outcoming links are exactly those whose underlying graph is covering prime (i.e., it does
not cover nontrivially another graph—see Section 4).

An analogous reasoning shows that, under the assumption of fully bidirectional links,
the networks admitting an election algorithm are exactly those whose underlying graph is
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symmetric-covering prime. For more details, see [5].

It is also of interest to consider the central daemon model, in which exactly one processor
is activated at a time. The order of activation is not known, and an algorithm solving
election in this model must work no matter which order is actually selected. We shall not
go into detail here, but it is possible to prove that the existence of a fibration G — B
such that the strong components of the subgraphs induced by fibres are singletons forces
all processors in the same fibre always to remain in the same state.

3 Universal fibrations and coverings

In this section we prove the existence of certain trees fibred over a graph G that give the
“largest” possible fibration, in a sense that will be made precise by the following theorems.

3.1 Universal total graphs

Theorem 3.1 Let T be an in-tree with root r, and let v : T' — G be a fibration. Then,

for each fibration ¢ : H — G, there exist exactly |¢~1(v(r))| fibrations ¢ : T — H such

that ¢ o1 = v; more precisely, the fibration ¢ is uniquely determined by the choice of 1 (r)

in the set =1 (v(r)).

Proof. For each y € ¢ 1(v(r)) we shall define a map 1, as follows: a node t of T
—_ y

is mapped to s(v(t — r) ) (the source of the path obtained by lifting v(t — ) to y);

——ahy (¢
the map on arcs is defined in the obvious way, that is, ¥y(a) = v(a) 2 (a)). Note that

y
y(r) = s(v(r =) ) =y, so the maps v, are all distinct; moreover 1), is a fibration.
Finally

—_ y —_

Py (1)) = p(s(w(t = 1) ) = s(p(w(t = 1) ) = s(w(t = r)) =v(s(t = r)) =v(t),

as required. Now, let ¢ : T'— H be any fibration such that ¢ o1 = v, and take y = (r);
necessarily v(r) = p(¥(r)) = ¢(y), so y € ¢ 1(v(r)), and one immediately verifies that
w = %- ]

Thus, every fibration of an in-tree to a graph G is universal, in the sense that essentially
every other fibration with base G factors it (a categorical characterization of such fibrations
in terms of adjoint functors will be given in Section 6). Note that the tree T' of Theorem 3.1
is unique up to the choice of v(r):

Corollary 3.1 Let T, T’ be two in-trees with roots r,7/, andlet v : T'— G and v/ : T' — G
be two fibrations. If v(r) = v/(r') then T = T".

Proof. Using Theorem 3.1, we obtain a fibration ¢ : T — T’ such that ¢(r) = r'. But
such fibration is necessarily an isomorphism, since T" and 1" are in-trees. 1

We shall now prove that such “universal” fibration exists:

Theorem 3.2 For every node z of a graph G there is an in-tree G* with root r, and a
fibration v§ : G — G, such that vE(r) = x; we call vf the universal fibration of G at x,
and G” the universal total graph of G at x.

Proof. We define the in-tree G as follows:
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e the nodes of G® are the finite paths of G ending in x;

e there is an arc from the node 7 to the node 7’ iff 7 = an’ for some arc a (if G is
coloured, then the arc gets the same colour as a).

We then define the graph morphism v from G” to G by mapping each node 7 of G* (i.e.,
each path of G ending in z) to its starting node, and each arc of G* to the corresponding
arc of G. It is immediate to check that v is a fibration. I

Observe that, by the universal property, for every fibration ¢ : H — G and for every node
y € ¢ Y(x) there is a unique isomorphism ¢ : G* — HY such that the following diagram
commutes:

3.2 Universal coverings

Similar properties relate covering projections and trees:

Theorem 3.3 Let T be a (symmetric) tree with root r, G be a (symmetric) graph and
v : T — G be a (symmetric) covering projection. Then, for each (symmetric) covering
projection ¢ : H — G, there exist exactly |¢~!(v(r))| (symmetric) coverings projections
1 : T'— H such that i o ¢ = v; more precisely, ¢ is uniquely determined by the choice of
¥(r) in the set = (v(r)).

The proof is similar to that of Theorem 3.1, and thus omitted. Correspondingly, we have
a notion of (symmetric) universal covering of G at z, obtained by replacing the paths into
x by the nonstuttering walks (paths) into x:

Theorem 3.4 For every node z of a (symmetric) graph G there is a (symmetric) tree G,
with root r, and a (symmetric) covering 7§, : G’ — G, such that Ta(r) = .

Proof. We just discuss the symmetric case, the other one being similar. Define G as
Sym(T'), where T is the subtree of G* induced by those paths that are not symmetrically
stuttering; G is defined by extending v in the natural way (as Sym(—) is an adjoint
functor—see Section 6). Thus, for example, there will be an arc from the node ar to the
node 7, and another arc going in the opposite direction, added by symmetrization. The
former will be mapped by 7, to a, and the latter to @.

Clearly 7§, is symmetric, so we just have to show that it is actually a fibration; let now
a be an arc of G, and 7 a path from t(a) to z. If 7 does not start with @, then a can be
lifted to the only arc going from am to 7; conversely, if 7 = an’, then a can be lifted to the

only arc going from 7 to . I

Note that if one looks at G as a (symmetric) graph, then it depends only on the connected
component in which z lies, that is, G* is isomorphic to G, for every choice of  and y
in the same component. On the other hand, if we look at G* as a graph with a selected

node (the root), then different nodes will usually possess different universal (symmetric)
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coverings: we shall use the term “rooted universal (symmetric) covering” in this case.
A purely combinatorial proof of the invariance of (symmetric) universal coverings along
connected components is rather cumbersome; however, this fact will be an immediate
consequence of a categorical representation theorem given in Section 6.

The construction of the symmetric universal covering corresponds essentially to the
standard construction of a universal covering of undirected graphs from topological graph
theory; however, it also includes naturally the case of loops (fixed or otherwise), upon
which there seems to be little agreement.

Indeed, our definition solves the rather subtle issues determined by the presence of loops:
for instance, a symmetric graph with one node and two loops has the bidirectional line as
universal symmetric covering, but the universal symmetric covering projection is different
depending on whether the symmetry is the identity or not; moreover, when only one loop is
present the universal symmetric covering reduces to a single bidirectional segment, which
accounts for the “loops counted once vs. loops counted twice” dilemma in the definitions
found in the literature.

3.3 Nodes with the same universal total graph

We shall be interested in identifying the nodes of a graph sharing the same universal total
graph (or covering), possibly in an effective way. We start with the following “compactness
lemma for trees™

Lemma 3.1 Let T and U be locally finite in-trees (trees, symmetric trees). Then, T' >~ U
it T 1 k=U]|kforall ke N.

Proof. Let ap : T [ k — U [ k, for kK € N, be the isomorphisms of the hypothesis. Note
that given an isomorphism § : T [ 7 — U | j such that the set I = {i | a; extends 5} is
infinite, it is always possible to extend f to an isomorphism v: T [ (j+1) = U | (j + 1),
leaving the set {7 | o; extends 7} infinite, as the equivalence relation defined on I by i ~ ¢
iff the restriction of ; and oy to T' | (j+ 1) coincide has finite index. This allows to define
by recursion a sequence By, 81,... of isomorphisms S : T' | £ — U | k such that Bry1
extends B, inducing an isomorphism 7" — U. 1

Generalizing in a natural way the classical definition [3] to our setting, we say that a highly
recursive graph is a locally finite graph G in which Ng and Ag are recursive subsets of N,
the function G(—, —) from Ng x Ng to the finite subsets of A¢ is recursive, and there is
a recursive function v from N¢ to the finite subsets of Ng such that y € v(x) iff G(z,y) U
G(y, ) is nonempty (i.e., the neighbourhood of each node is recursively computable). For
symmetric graphs, we also require that the symmetry is a recursive function. The previous
lemma, which is of course true also of (symmetric) trees, has an immediate consequence:

Theorem 3.5 Given a highly recursive graph G, the question whether two nodes have
different universal total graphs (rooted coverings, rooted symmetric coverings) is semi-
decidable, but not decidable.

Proof. Given nodes z and y, using iteratively the function G(—,—) it is possible to
build G* [ k and GY [ k, and thus semi-decide whether G® [ k 2 GY [ k for some k,
so by Lemma 3.1 we can semi-decide whether G* 2 GY. On the hand, by coding the
configurations of a universal Turing machine into natural numbers and putting an arc into
G(z,y) whenever x is the next state after y, we obtain a highly recursive graph in which
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G” is an infinite path iff the universal Turing machine does not stop starting from the
configuration coded by x. By choosing a fixed node z coding a configuration that is known
to be nonterminating, we obtain a reduction of the halting problem to the different total
graph problem. The proof in the case of (symmetric) coverings is analogous. Il

Consider now the equivalence relations ~ on the nodes of an arbitrary graph G defined
by x>~y if G [ k= GY [ k.

Lemma 3.2 If ~;=~ ¢ for some k € N, then ~;=~_; for all j € N.

Proof. Let 2~y y, and o : G® | (k+1) = GY | (k+1) be the corresponding isomorphism.
For every arc a coming into the root of éx, we have GU&(s(@) [ k= GV&(s(a(@) | k, that
is, vE(s(a)) ~, vE&(s(a(a))), but this implies the same at depth k 4 1, so there is an
isomorphism GV& (@) [(k+1) — Gv& (s((a)) I (k+1). Combining these isomorphisms
for all a, we obtain an isomorphism G® [(k+2) = GY I (k+2), sox ~jy9y. The result
follows by induction. 1

An analogous statement holds, of course, for universal (symmetric) coverings, by redefining
suitably ~p. This fact allows one to decide effectively universal total graph isomorphism
when a graph is finite, and indeed a result of Nancy Norris [23| could be restated as follows
in our terminology:

Theorem 3.6 If G has n nodes, for all nodes x, y, G* =~ QY iff G* [ (n—1) = GY [ (n—1),
that is, iff there is an isomorphism between the first n — 1 levels of the two trees. The same
holds for rooted universal coverings.

Here, we extend the previous theorem to universal symmetric coverings; we also provide a
much shorter proof.

Theorem 3.7 Given a finite graph G with n nodes, two nodes z and y have the same
universal total graph (rooted covering, rooted symmetric covering) iff x ~, 7 y. Thus, the
question whether two nodes have the same universal total graph (rooted covering, rooted
symmetric covering) is decidable.

Proof. By compactness, G® ~ QY iff x ~; y for all k € N. But since ~1 refines ~,
certainly ~,, 1=~ by the previous lemma and by finiteness of G. 1

The bound given by Theorem 3.6 is tight, as remarked in [23], by the example shown
in Figure 3. The very same example shows that even in our case the bound remains
tight—in fact, it shows that this is true even if we require the graph to be symmetric
and deterministically coloured: the two leftmost nodes share the first n — 2 levels of their
universal total graphs (rooted [symmetric| coverings), but not the first n — 1.

b a b
b a b
Figure 3: A graph showing the tightness of Theorem 3.7.

We get back to the example given in Section 2.5. The reader will have probably guessed at this
point that in an anonymous distributed system processors with the same universal total graph always
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remain in the same state. This was already noted (for the undirected case) in the seminal paper by
Angluin [2], where she showed that processors with the same universal covering always remained in
the same state (the network model used there is however much stronger, requiring bidirectionality
and determinism of the arc colouring). This condition, which was just shown to be sufficient,
turned out also to be essentially necessary later, in the work of Yamashita and Kameda [37], who
considered same model.

The constructive proof of Theorem 3.7 can be easily modified to show that processors sharing
the first k levels of their universal total graphs have the same state during the first & steps of the
computation, whichever algorithm and initial state one chooses. This implies that no algorithm
will ever be able to drive processors having the same universal total graph into distinct states. This
is true independently of any other structural property of the graph, and thus applies to a very wide
variety of models (for instance, to wireless networks, in which it is impossible to distinguish which
link provided which message).

On the other hand, there is an algorithm that allows each processor to compute (a finite number
of levels of) its own universal total graph. The algorithm is fairly obvious, and consists in reading
(at step k) from all neighbours their universal total graph truncated at depth k; this makes each
processor capable of building its universal total graph truncated at depth k + 1, and so on (for
more details, see [6]). Once enough levels are known, each processor knows which equivalence
class (of isomorphism of total graphs) it lies in; then, for instance, the processors in classes that are
singletons can initiate a standard election algorithm (e.g., by lexicographic ordering of the universal
total graph).

The situation is much more complicated in the central daemon case, or if we consider a class
of network instead of a single network. The theory of minimum bases and minimal fibrations,
developed in the next section, approaches exactly these problems.

4 Minimal fibrations

It is worth noticing that every fibration of a graph “smashes together” some nodes that
possess the same universal total graph:

Proposition 4.1 If ¢ : G — B is a fibration, and ¢(z) = ¢(y), then G* = GY.

Proof. By the universal property, we have B#(®@) >~ G= and also B¥W) = éy, from which
the conclusion follows immediately. 1

It is natural to ask whether it is possible to take this process to extremes and identify any
two nodes having the same universal total graph. This question will be answered shortly,
after some definitions are introduced. A graph G is node-rigid iff every automorphism of
G is node-trivial; it is rigid iff its automorphism group is trivial.

Definition 4.1 A graph G is fibration prime iff it cannot be fibred nontrivially, that is,
every epimorphic fibration G — B is an isomorphism.

In previous papers [5, 6, 7| fibration-prime graphs have been called trivial bundles. The
present change of terminology was dictated by the desire of avoiding confusion with the
current topological custom. Moreover, it pays a tribute to divisor theory—graphs without
rear divisors are exactly fibration-prime graphs.

Proposition 4.2 A fibration-prime graph is node-rigid. A separated fibration-prime graph
is rigid.
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Proof. Let G be fibration prime, and suppose « is a non-node-trivial automorphism of
G. Then every fibration associated with the action of the subgroup generated by « is
nontrivial—a contradiction. Finally, note that for separated graphs an automorphism is
node-trivial iff it is the identity. 1

Theorem 4.1 Let G be a graph. Then there exists a graph B such that G is epimorphically
fibred over B, and the universal total graphs of B are pairwise nonisomorphic.

Proof. Define x ~ y iff G* =~ Y. Then ~ enjoys the local in-isomorphism property, and
the claim follows by Theorem 2.1. 1

This leads to the useful

Corollary 4.1 A graph is fibration prime iff its universal total graphs are pairwise noni-
somorphic.

Proof. If G has a pair of isomorphic universal total graphs, by Theorem 4.1 we can fibre
it nontrivially. The other direction is immediate by Proposition 4.1. I

The important property of fibration-prime graphs we shall need is given by the following

Theorem 4.2 Let B and C be fibration prime, and suppose they have the same (set of)
universal total graphs. Then B = (', and the node component of such isomorphisms is
unique.

Proof. Since by Corollary 4.1 no two nodes of B (C, respectively) have isomorphic uni-
versal total graphs, there is a unique bijection ¢ : Ng — N¢ such that B* = C?(®) for all
nodes x of B. Consider now an arc a of B with target z; the above isomorphism associates
to a” (r is the root of B”, and the lifting is along v{) a unique arc b of C#?®) and we define

ola) = vg(x)(b). Note that the source of @’ induces a subtree of B* that is isomorphic
to the subtree induced by the source of b; by the abovementioned uniqueness property,
this fact ensures that the source of ¢(a) is the image through ¢ of the source of a, and
because of the local in-isomorphism property ¢ is an isomorphism. Finally, note that the
existence of two isomorphisms with a different node component between B and C' would
imply the existence of a non—node-trivial automorphism of B (and C'), which is impossible
by Proposition 4.2. 1

The above theorems suggest to investigate fibrations whose base is fibration prime:

Definition 4.2 A fibration p : G — B is minimal iff it is an epimorphism and B is
fibration prime.

Theorem 4.3 If G is minimally fibred over B and C, then there is an isomorphism « :
B = C and the node component of the two fibrations is the same, modulo composition
with (every such) .

Proof. Let ¢ : G — B and ¢ : G — C be the two fibrations. Clearly B and C have the
same universal total graphs as G; thus, there is an isomorphism a : B = C. But for each

z € Ng
Be(@) o pe@) o~ v o (@)

which by primality of C' implies a(p(x)) = ¥(z). 1
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Thus, all minimal fibrations of a graph G have (up to isomorphism) the same codomain,
which is called the minimum base of G, and denoted by G (an example is given in Figure 4);
moreover, they all behave in the same way with respect to the nodes (they can only differ in

NN
{\ /\

Figure 4: A graph, one of its universal total graphs and its minimum base.

Q)

the way they map arcs of G to arcs of @) Note however that Theorem 4.3 does not extend
to (symmetric) coverings, as the following example shows. The two graphs in Figure 5

X &2

Figure 5: Two nonisomorphic prime coverings with the same universal covering.

are (symmetric-) covering prime, that is, they cannot cover nontrivially another graph, for
they have a prime number of nodes (see Proposition 2.2). They are also nonisomorphic
(the first one gets disconnected by the removal of a node, the second one does not) but
nonetheless it is easy to check that they share the same universal (symmetric) covering.
In particular, by Leighton’s Theorem (|19]—see Section 6), they share a common finite
(symmetric) cover. So we have an example of a graph whose minimal (symmetric) covering
bases are not isomorphic.

It is interesting to note that a sufficient condition for a finite graph to be fibration
prime is that its characteristic polynomial (i.e., the characteristic polynomial of its adja-
cency matrix) be irreducible over Z. This is due to the fact that, as we remarked in the
introduction, the existence of a fibration ¢ : G — B implies that the characteristic poly-
nomial of B divides the one of G (and the quotient lies in Z[x]). The implication cannot
be reversed: the 2-outregular graph with exactly two nodes and one loop has characteristic
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polynomial (A — 2)(A + 1), although it is fibration prime.

The reader familiar with process algebras and their semantics (see, e.g., [21]) will have
certainly noticed that the unfolding of a labelled transition system with initial state, that
is the synchronization tree generated by a labelled graph G with a selected node z, is
exactly the graph that is universally opfibred over G at x, or, equivalently, the dual of the
universal total graph at x of the dual of G. Even more is true: any graph G is strongly
bisimilar to its minimum base, but if G is not deterministically coloured there can be even
smaller graphs that are strongly bisimilar to GG, which is probably the reason why zig-zag
morphisms (see, e.g., [17]) were preferred to fibrations in graph-theoretical formalizations
of strong bisimilarity.

4.1 Constructing minimum bases

Theorem 4.1 provides, in the finite case, a constructive procedure for building minimal
fibrations; however, a more efficient algorithm can be obtained by using set-partition tech-
niques.

Theorem 4.4 Given a finite graph G, there is a set-partition algorithm that computes
the minimum base of G and a minimal fibration.

Proof. The algorithm we are going to describe partitions the graph into classes of nodes
having the same universal total graph. To do so, it works in |[Ng| — 1 phases: the parti-
tion associated to phase k is the one induced by the equivalence relation ~j described in
Section 3.3 (i.e., two nodes are in the same class iff they share the first k levels of their uni-
versal total graphs). By Theorem 3.7, after the last phase two nodes are in the same class
iff they have the same universal total graphs; this relation enjoys the local in-isomorphism
property, and thus induces a fibration, which is minimal by Corollary 4.1.

At phase 0, all nodes are in the same class, because ~ is the total relation. To build
~p11, just note that  ~p,q y iff z ~; y and there is a bijection ¢ : G(—,z) = G(—,y)
such that s(a) ~ s(b) and t(a) ~ t(b), and refine the current partition accordingly. I

The previous theorem allows one to derive from a graph its minimum base. However, it
is possible to build G with much less information. We have already seen (Theorem 3.7)
that for finite graphs the isomorphism of universal total graphs needs to be tested only on
n — 1 levels. Thus, n+ D levels (recall that D is the diameter of G) of any universal total
graph of G contain enough information to rebuild the minimum base, given the knowledge
of n and D. The following theorem shows that the minimum base can be constructed
even without knowing n and D. That is, given a sufficiently deep finite truncation of a
universal total graph, we can always build the minimum base of its graph without using
other information.

Theorem 4.5 Let G be a strongly connected graph with n nodes and diameter D and B
a fibration-prime graph with minimum number of nodes satisfying G* | (n+ D)= BY |
(n+ D) for some x € Ng and y € Np: then B = G.

Proof. Note that B has at most n nodes, because the minimum base of G satisfies the
hypotheses. We shall build a morphism ¢ : G — B by sending a node z of G to the unique
node ¢(z) of B satisfying G* | (n—1) = B#®) | (n—1). This node can be found as follows:
there is certainly a node 2z’ € (v%)~!(2) that is at depth D at most. Thus, the subtree
under 2’ in G® | (n+ D) has height at least n— 1. Let ¢ : G* | (n+D) — BY | (n+ D) be
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n—2

Gn,nfl annfl

Figure 6: Graphs with similar universal total graphs.

the isomorphism above. Then ¢(z) = (v% 0 )(z). Note that the choice of 2’ is irrelevant,
by Corollary 4.1.

We now define analogously ¢ on the arcs, by using the lifting property. Let a be an arc
of G. We choose, as before, a z € (vg) ! (t(a)) that is at depth D at most, and consider the
lifting @*. Then we set p(a) = (v 01))(a®). Note that this is compatible with our definition
on the nodes, because s(a?) is at depth D + 1 at most, and thus its image through v o1
must be ¢(s(a)), by Theorem 3.7. It is then easy to check that since ¢ has been defined
by a lifting and composition with isomorphisms and fibrations, it is itself a fibration. 1

The bound given in Theorem 4.5 is tight. Consider the families of graphs G,, p and H, p
(with n nodes and diameter D) depicted in Figure 6 (the only difference between the two

1 —1
families is given by the dotted arc). It is easy to show that G, p [(n+D—1)=H,p |
(n+ D — 1), but the graphs are fibration prime. Thus, in general the bound n + D cannot
be improved.

The theorems proved in this section allow one to characterize effectively the solvability of the
election (and virtually any other computability) problem anonymously. Although the machinery
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we developed is definitely overkill for a single network, it can be used to provide analogous results
for arbitrary classes of networks, and also to decide the computability of functions [6] or relations.

The main idea is that if we have a class € of networks, and we want to know, for instance,
whether an election algorithm working for all networks of € exists, we must study the minimum
bases (and related fibrations) of all networks of €. Essentially, for each fibration-prime graph B
there must be a node x such that for every minimal fibration ¢ : G — B, with G € €, the fibre over
x is trivial (i.e., |p~1(z)| = 1). This is a necessary and sufficient condition, and works also for the
central daemon case, provided that we restrict the class of fibrations used in the way discussed in
Section 2.5.

Sometimes we do not require an election algorithm to terminate—rather, we need a self-
stabilization property: even if the algorithm is nonterminating, after a finite number of steps
the global state of the system is an election state. Theorem 4.5 is a fundamental tool in providing
an upper bound for this number of steps in the most general case. Consider an arbitrary infinite
class of networks € such that election is possible in every finite subclass of €. In this case it is
possible to use the algorithm described previously, assuming the existence of a larger number of
nodes in the network at each step. No matter how large the network is, after exactly n+ D steps the
processors will enter an election state, since they will compute correctly the minimum base. These
consideration can be pushed further to every computable self-stabilizing nonreactive behaviour, as
done in [7].

5 Graphs fibred over bouquets

As we discussed in the previous section, sometimes minimal covering bases may not be
isomorphic. However, one can still “work backwards” and, given a base graph B that is a
prime covering, classify the related covering spaces, that is, the graphs having B as minimal
(epimorphic) covering base (one could even work with a set of such bases).

In this section, we attack the simplest case and characterize the graphs defined by the
property of being fibred over (or covering) a bouquet (i.e., a graph with exactly one node).
It is obvious that the graphs fibred over bouquets are exactly the inregular graphs; if the
fibration is required to be associated with an action, we obtain exactly the node-transitive
graphs, and if the action is required to be free we obtain exactly the Cayley graphs, by
Sabidussi’s theorem [28|. The characterization of (symmetric) coverings of bouquets is
however more interesting, and requires sometimes additional hypotheses.

We set up some terminology: a d-factor of a graph G, where d € N, is a d-regular
subgraph containing all nodes of G; a symmetric d-factor is a d-factor closed by symmetry.
For a set I C N, a (symmetric) I-factorization of G is a set of arc-disjoint subgraphs of
G, such that each subgraph is a (symmetric) d-factor, for some d € I, and each arc of G
belongs to one of the factors (if I is a singleton, we omit curly braces). Note that 1-factors
of symmetric graphs are usually called perfect matchings (but some care must be taken in
interpreting correctly the meaning of semi-edges).

The following theorem highlights the relation between coverings of bouquets and factors:

Theorem 5.1 A graph covers a bouquet iff it is 1-factorable. A symmetric graph covers
symmetrically a bouquet iff it is symmetrically {1,2}-factorable in such a way that the
2-factors do not contain semi-edges.

Proof. In the first case, the fibre of a loop of the bouquet induces exactly a 1-factor, by
uniqueness of lifting and oplifting. Analogously, in the second case the fibre of a pair of
loops exchanged by the symmetry is a symmetric 2-factor without semi-edges, while the
fibre of a semi-edge is a symmetric 1-factor.
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On the other hand, if a graph is 1-factorable the morphism to a bouquet (with as many
loops as there are factors) that sends each factor to a distinct loop is trivially a covering
projection. In the symmetric case, we add to the bouquet a pair of loops exchanged by
the symmetry for each symmetric 2-factor, and a semi-edge for each 1-factor. For each
component of a symmetric 2-factor, we choose arbitrarily to send a selected arc a to one of
the two loops: this choice extends uniquely to all other arcs (in the other case the map is
unique). 1

Consequently, our classification results will depend on some lemmata about factorizations.
We remark that there are no hidden cardinality assumptions; in the rest of this section, we
shall use silently the axiom of choice, as we have already done in the proof of Theorem 2.1.

5.1 Factorization lemmata

The first result we need is in fact a well-known matching theorem for finite bipartite undi-
rected graphs, which can be interpreted as an existence theorem for 1-factors in digraphs,
and can be extended to the countable, locally finite case [24]. We provide a self-contained
proof, which does not depend on matching theory and turns out to be fairly shorter; more-
over, we extend the original statement to nonseparated graphs. Given a set of nodes X,
we let GT(X) = t(G(X,—)), that is, GT(X) is the set of nodes that are targets of arcs
going out of X. We recall that a sink is a node without outgoing arcs (i.e., G(x,—) = &);
a subset of nodes is sink-free if it does not contain any sink.

Lemma 5.1 Let G be a d-regular graph. Then G has a 1-factor (so it is 1-factorable).

Proof. Given a sink-free finite subset X of Ng let
8(X) = [X] - |G (X))

be the deficiency of X (i.e., the difference between |X| and the number of nodes that are
targets of arcs going out of X). The deficiency of G, denoted §, is defined as the supremum
among the deficiencies of all finite sink-free subsets of nodes

0 = sup{d(X) | X is a finite sink-free subset of Ng},

and a simple pigeonholing argument shows that regular graphs of finite degree are without
deficiency (i.e., 6 = 0; note that (&) = 0, so the deficiency of G cannot be negative).
Because of the disequation

GTXUY)| +|GTHX NY)| < [GHX)| + |G (V)]

we have that
(X UY)+6XNY)>0(X)+0(Y),

S0, in particular, in a graph without deficiency the intersection and union of finite sink-free
subsets with deficiency 0 have still deficiency 0.

Let now F' be a 1-subfactor of G, that is, a subgraph of G such that every node has
at most one incoming and at most one outgoing arc. We define G\ F as follows: we
subtract from G all arcs having the same source or target of an arc in F'. Consider now the
partially ordered set of 1-subfactors F' that leave G\ /' without deficiency. If we have a
totally ordered subset O of such 1-subfactors, | JO is a 1-subfactor, and the graph G\ J O
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is without deficiency, for these conditions must be false for some element in O if they are
false for JO. So there must be a maximal 1-subfactor M leaving G without deficiency,
and we are going to show that it is a 1-factor of G (this happens iff G\(M has no arcs).

Assume by contradiction that G\ M has one or more arcs. We show that we can easily
add an arc to M, contradicting maximality. In the rest of the proof, X and Y will always
denote finite nonempty sink-free subsets of the graph under consideration.

If all subsets X of G\(M have strictly negative deficiency, any arc can be added to M.
Indeed, a subset Y of G\ (M,, where M, is obtained by adding an arbitrary arc a to M,
cannot contain s(a), so

(GNMo) " (V) = (GNM) T (V) \ {t(a)},

and this implies 6(Y) < 0. Otherwise, we consider a minimal subset X of G\/M such that
d(X) =0in G\ M, and we choose an arc a going out of some node of X. Given a subset
Y of G\(M,, we must show that it has nonpositive deficiency. If Y has strictly negative
deficiency in G\ M, the argument goes as in the previous case. Otherwise, Y cannot
contain X (because it does not contain s(a)), so it is disjoint from X (by minimality of
X). But then t(a) € (GN\M)T(Y), for otherwise X UY would have positive deficiency in
G\ M, so Y still has deficiency 0 in G\ M, . 1

We now extend the previous theorem to regular graphs of infinite degree ¢ in a special
case: recall that a node y is a successor of x iff G(x,y) is nonempty, and a predecessor of
x if G(y,z) is nonempty; we say that a graph is well balanced iff [t(G(z,—))| = |G(x, —)|
and |s(G(—,z))| = |G(—,z)| for all nodes x, that is, every node has as many successors
as outgoing arcs, and as many predecessors as incoming arcs. On locally finite graph well
balancing is equivalent to separatedness, but this is not true when we turn to graphs with
infinite local degree (of course, separated implies well balanced).

Lemma 5.2 Let G be a well-balanced c-regular graph. Then G is 1-factorable.

Proof. We note that G can be assumed of cardinality ¢ (i.e., |[Ng| = |Ag| = ¢), as by
hypothesis each connected component of G must contain at least ¢ nodes, and since k-
distance neighbours of a node cannot be more than ¢ = ¢, each connected component
cannot contain more than Roc = ¢ nodes; clearly, G covers a c-bouquet iff all its connected
component do.

First of all we prove that every graph H satisfying the hypotheses has a 1-factor in-
cluding a given arc a. For this purpose, we shall define injective functions f and g on the
nodes of H such that H(x, f(x)) and H(g(z),x) are nonempty for every node x, and more-
over f(s(a)) = t(a), g(t(a)) = s(a). By the Schroder—Bernstein theorem (given injections
f: X —Yand g:Y — X, there is a bijection h : X — Y such that for all x € X either
h(z) = f(x) or h(x) = g~'(x)), we shall then obtain a permutation p on the nodes of H
such that p(s(a)) = t(a) and H(x,p(z)) is nonempty; as a consequence, we shall be able to
build a 1-factor of H including a, by selection of an arbitrary arc from each set H (z, p(z)),
x # s(a).

Let zg,x1,...,Zy,... be an ordering of the nodes of H of order type =y, where ~ is the
least ordinal of cardinality ¢. We build the function f extending by transfinite recursion
the definition f(s(a)) = t(a). Given a f < v (so |f| < ¢), and assuming we defined f for all
nodes z, with a < 3, we define f(x3) by choosing arbitrarily the target of an arc coming
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out of zg that does not belong to

X5 = [J{f(za)}-

a<f

This is always possible, as
[Xs| = [{f(za) | < B} = Ha[a < B} =B8] <,

so there are ¢ targets of arcs going out of x, still left. Of course, the function g can be
obtained analogously.

Now, let ag,aq,...,ay,... be an ordering of the arcs of G of order type . By transfinite
recursion, we define for each § < v a subgraph Fj of G that is either empty or a 1-factor.
More precisely, given a 8 < v, and assuming we defined F,, for all o < 3, we define Fjg
either as the empty subgraph, if ag belongs to F;, for some o < 3, or as a 1-factor of the
graph obtained deleting from G the arcs in |J,. 3 Fo; moreover, we can choose Fjg so that
it contains ag, since the deletion of the arcs in |J,. 5 Fa can reduce the cardinality of the
successors (predecessors) of a node at most by || < ¢. Clearly the nonempty Fj’s are
disjoint, and contain by construction every arc of G. This gives a 1-factorization of G of
cardinality ¢ and thus, by Theorem 5.1, G covers a c-bouquet. 1

Note that well balancing is necessary, as a graph with two nodes z,y and ¢ = |G(z,y)| =
Gy, x)| = |G(z,2)] > |G(y,y)| shows.

Symmetric factorizations are more difficult to deal with, and we shall need some additional
hypotheses.

Lemma 5.3 Let G be a symmetric locally finite even graph (i.e., a graph such that the
indegree of each node is equal to its outdegree, and they are both even) without semi-edges.
Then, the arcs of G can be partitioned so that the arcs in each class (and their endpoints)
form a symmetric connected 2-regular subgraph of G (i.e., a bidirectional cycle or infinite
line).

Proof. First we prove that each graph H satisfying the hypotheses contains a symmetric
connected 2-regular subgraph. We can assume without loss of generality that H is separated
and loopless, because otherwise we could obtain the subgraph above closing by symmetry
two parallel arcs or a loop. Let now a be an arc going from g to 1 and, using the even
degree assumption, build by recursion a biinfinite sequence of nodes ...,z_1,xg,z1,Z2,...
such that z;_o # x; € H(z;—1). A maximal subsequence without repetitions defines a
symmetric connected 2-regular subgraph.

Consider now the set of subpartitions of Ag (i.e., partition of subsets of Ag) whose
classes form symmetric connected 2-regular subgraphs of G, partially ordered by inclusion.
Every chain in this set has a bound (the union), so there is a maximal element M. If M is
not a partition of Ag, we consider the graph having the node set of G but arcs Ag \ UM,
which satisfy the hypotheses of the theorem, and thus has a symmetric connected 2-regular
subgraph, which can be added to M, contradicting its maximality. 1

By using this lemma, one can prove that:

Theorem 5.2 Let G be a symmetric graph without semi-edges. Then:

1. if G is 2m-regular, then it is symmetrically 2-factorable;
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2. if G is (2m + 1)-regular, then it is symmetrically {1,2}-factorable iff it possesses a
symmetric 1-factor;

3. if G is well balanced and c-regular, then it is symmetrically 2-factorable.

Proof. (1). Consider the partition of the arcs of G whose existence is guaranteed by
Lemma 5.3. For each class, we choose a maximal antisymmetric subset (i.e., essentially
an orientation). The graph H having the same node set as G but the union of all such
antisymmetric sets as arcs is a regular graph (its degree is half of the degree of G). By
symmetrization, the 1-factorization of H whose existence is guaranteed by Lemma 5.1 can
be turned into a symmetric 2-factorization of G.

(2). One implication is straightforward (a graph of odd degree cannot be 2-factorable). For
the other side, if G possesses a symmetric 1-factor, the graph obtained by deleting such a
factor has even degree, and we can use part (1).

(3). The proof is similar to that of Lemma 5.2; the only relevant modification is in the
construction of f and g—the requirements f(x) # g(z), f(f(x)) # = and g(g(x)) # x must
be fulfilled, so that the resulting 1-factor is antisymmetric (i.e., if a is in the factor a is
not). Then, in the construction of the transfinite sequence Fj one deletes from G not only
the arcs in the Fj,’s, but also their symmetric ones. This gives a symmetric 2-factorization
of G of cardinality c. 1

The first part of the previous theorem is, of course, a generalized version of Petersen’s
theorem on 2-factorability of 2m-regular undirected graphs.

5.2 Regular Graphs

For every natural number d, the following theorem characterizes the covers of d-bouquets.

Theorem 5.3 The coverings of d-bouquets are exactly the d-regular graphs.

Proof. Each covering G of a d-bouquet is trivially d-regular by the local isomorphism
property. On the other hand, Lemma 5.1 and Theorem 5.1 show that a d-regular graph
covers a d-bouquet. I

Clearly, by local isomorphism the left-to-right implication of the previous theorem is true
for every cardinality ¢. Assuming well balancing, the reverse implication can be proved
using Lemma 5.2:

Theorem 5.4 Let GG be a well-balanced graph. Then G is c-regular iff it covers a c-bouquet.

Note that in the case of separated graphs we can just assume c-regularity. Using Theo-
rem 5.2, we can easily extend the previous results to symmetric graphs without semi-edges:

Theorem 5.5 Let G be a symmetric graph without semi-edges. Then:
1. G covers symmetrically a 2m-bouquet iff it is 2m-regular;

2. G covers symmetrically a (2m + 1)-bouquet iff it is (2m + 1)-regular and possesses a
symmetric 1-factor;

3. if G is well balanced, then G covers symmetrically a c¢-bouquet iff it is c-regular.
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5.3 Schreier Graphs

Yet another characterization of graphs covering bouquets can be expressed in group-
theoretical terms. Let I' be a group, H a subgroup of I' and S C I' a set of elements
of I'. The Schreier graph of I' with respect to H and S is the graph having as nodes the
right cosets of H, and an arc from Hg to Hh for each s € S such that Hgs = Hh. When
S is closed by inversion, the resulting graph is naturally endowed with a symmetry.

Notice that it is natural to wonder whether a weaker definition, that is, that S be
endowed with a self-inverse bijection (7) : S — S relating elements that are mapped to
inverses by the right representation of I" in the system of cosets of H (that is, Hgss = Hg
for all g € T'), would be more appropriate. However, our (restrictive) definition causes no
loss of generality: in the case above, we simply consider the Schreier graph of Sip.p) with
respect to the subgroup fixing a chosen node and the set of permutations S’ induced by S;
the resulting graph is isomorphic to the original one, and moreover now the symmetry of
S’ is exactly inversion in Sjp.p-

A Schreier graph is |S|-regular, and it is connected iff H(S) = I'. Moreover, it is
naturally coloured on the set S—the s-induced arc from Hg to Hgs is coloured by s; such
a graph is called the Schreier colour graph of I' with respect to H and S. (When H = 1,
we obtain the Cayley (colour) graph of T’ with respect to S.) Finally, we note that S can
also be a multiset of elements of I', with obvious extensions, and we shall tacitly use this
fact.

Theorem 5.6 The (symmetric) coverings of bouquets are exactly the (symmetric) Schreier
graphs.

Proof. If G is the (symmetric) Schreier graph of I' with respect to H and S, then we can
build a covering onto a (symmetric) |S|-bouquet by sending an arc that would be coloured
by s in s. (The symmetry on the bouquet is the symmetry induced by inversion in I'.)

Let now G be a (possibly symmetric) covering of a bouquet B, Sy, the symmetric
group on Ng and H the subgroup of Sy, fixing a chosen node z. For each loop a of B
consider the permutation 7, € Sy, induced by oplifting a (i.e., mq(x) = t(*a) ). Note that
if a and b are exchanged by a symmetry of B, then 7, = 7, L

We show that the Schreier graph of Sy, with respect to H and {m, | a € Ap} is
isomorphic to G (note that the previous set could be really a multiset). The map on
the nodes is obvious, as each coset of H in Sy, is uniquely characterized by the element
to which z is mapped, and the a-induced arc from Hp to Hpm, is mapped to #*)a. By
uniqueness of oplifting, this defines a graph isomorphism. 1

By combining the previous results, we also obtain that

Corollary 5.1 All d-regular graphs are Schreier graphs. All well-balanced c-regular graphs
are Schreier graphs.

Corollary 5.2 Let G be a symmetric graph without semi-edges. Then, under any of the
following hypotheses:

1. G is 2m-regular;
2. G is (2m + 1)-regular and possesses a symmetric 1-factor;

3. G is c¢-regular and well balanced;
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we have that G is a symmetric Schreier graph.

The results for the finite symmetric case are well known (see [14], where the authors remark
that there are cubic graphs without a perfect matching, so not all symmetric 2m+ 1-regular
graphs are Schreier graphs).

In Table 1 and 2 we summarize the main results obtained in this section. Note that
there are some gaps that are still to be filled—we do not know which regular graphs can
cover a bouquet by a covering projection that is associated with an action; moreover,
the classification for the symmetric case only applies to graphs without semi-edges. Note
also that assuming well balancing, in the infinite degree case “Schreier” can replaced with
“regular”.

| || Finite degree | Arbitrary degree |

fibrations inregular graphs

fibrations assoc. with an action node-transitive graphs

fibrations assoc. with a free action || Cayley graphs

coverings regular graphs | Schreier graphs
coverings assoc. with an action ? ?

coverings assoc. with a free action Cayley graphs

Table 1: A classification of graphs fibred over bouquets.

|| Finite degree | Arbitrary degree |

symmetric coverings Schreier graphs

2m-reg. graphs
2m + 1l-reg. graphs with a symm. 1-factor

symm. coverings assoc. with an action ? ?
symm. coverings assoc. with a free action Cayley graphs

Table 2: A classification of symmetric graphs without semi-edges fibred over bouquets.

The interesting lesson to be learned from the theorems above concerns the role of loops.
In the classical treatment of finite undirected Schreier graphs we just mentioned there is
an evident hiatus between graphs of even and odd degree, which shows up in Corollary 5.2.
Essentially, all undirected graphs of even degree are Schreier, but this does not happen in
the odd degree case—you need a 1-factor. The results of this section show that this hiatus
is an artifact of the representation used, rather than a feature. If there are semi-edges,
even a symmetric graph of even degree could need to possess a symmetric 1-factor to cover
a bouquet (and thus be Schreier): as an example, consider the symmetric 2-regular graph
with exactly two nodes and two semi-edges. Correspondingly, Theorem 5.1 and 5.6 do not
exhibit special cases related to parity.

Another interesting consideration concerns the classical definition of covering between
undirected graphs. There is no agreement in the literature about the definition of the lifting
of a loop, and more generally about its very nature: should it be counted once or twice? In
the first case the coverings of a bouquet are all regular graphs, in the second case all even
degree regular graphs. (Compare this fact with the very simple and general statement of
Theorem 5.6, which just cannot be expressed in the language of undirected graphs.)

To answer this question, we must borrow some material from the next section. We think
that the only reasonable mathematical answer to such a problem is to find a subcategory
of &, the category of symmetric graphs, which is equivalent to the category of undirected
graphs with edge set represented as a multiset of unordered pairs of nodes and morphisms
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preserving adjacency. Indeed, such a category exists, and it is the full subcategory of .%
induced by the graphs without loops that are not fixed by the symmetry (i.e., all loops
are semi-edges); of course, in this equivalence every nonloop edge is mapped to pair of
symmetric arcs, and every loop edge to an arc fixed by the symmetry (i.e., a semi-edge).
Note that mapping loop edges to pairs of loops exchanged by the symmetry would not work,
as, for instance, the automorphism group of the one-node, one-edge graph would contain
just the identity in the undirected setting, and two different morphisms in the symmetric
representation—the subcategory would not be full.

If we accept this viewpoint, we must inherit from . the combinatorial definition of
covering of undirected graph in the presence of loops: loop edges should be counted once,
and should lift to a 1-factor (i.e., to a perfect matching). Note that in this way a perfect
matching can also contain loops, and moreover every symmetric d-factor of the symmetric
representation corresponds exactly to a d-factor in the classical sense.

This choice, however, would be in contrast with some literature, where undirected
graphs have two kinds of edges incident on a single vertex, of degree two and one, respec-
tively, the loop edges and the semi-edges. A semi-edge adjacent to z lifts to a perfect
matching between the nodes in the fibre of x, while a loop edge lifts to a 2-factor. Semi-
edges are usually introduced a posteriori, as an additional kind of edge, while loop edges
are the standard “singleton edges” coming from the definition of an undirected graph (i.e.,
edges represented by the degenerate unordered pair given by the singleton {x}).

There is of course no mandatory choice: one can consider singleton edges as of degree
one or two, and then add a special definition for an additional entity of degree two or
one, respectively. However, if we keep in our mind the symmetric representation, there is
a major problem in the way loop edges and semi-edges are handled above: loop edges of
degree two should be “reversible”, in the intuitive sense that their two extremities should
be permutable by an automorphism, in the same way one can permute two loop arcs
exchanged by the symmetry. Clearly, the standard definition of undirected graph does not
allow this, and this is the reason why we find more reasonable to consider undirected loop
edges as counting once: when a clear distinction between the two kind of edges is required,
symmetric graphs are the way to go.

6 A categorical standpoint

As we remarked in the introduction, the definition of graph fibration can be traced back to
Grothendieck’s notion of fibration between categories (indeed, this seems to be the oldest
ancestor of graph fibrations). Every graph has an associated category (built by the left
adjoint to the forgetful functor sending a category to its base graph): objects are given
by the nodes of the graph, while arrows are given by paths, with composition defined by
concatenation; we usually denote with G both a graph and the free category it generates.
Definition 2.1 can be simply restated as follows: ¢ : G — B is a fibration iff the induced
functor ¢* : G — B is a (categorical) fibration [9], which turns out to be necessarily
discrete. In the case of symmetric graphs, the natural free category is built by the left
adjoint to the forgetful functor sending a category to its base graph endowed with the
symmetry f = f~!: this time, arrows are given by paths quotiented with respect to the
relation aa = 1, aa = 1; again, we denote with G both a symmetric graph and the free
category it generates (which, of course, turns out to be a groupoid), and Definition 2.3 can
be restated as before.
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Thus, one naturally expects graph fibrations to enjoy good categorical properties. In-
deed, we shall see that many graph-theoretical constructions we have used in the previous
sections can be naturally and elegantly described in categorical terms. Moreover, by prov-
ing that (op)fibrations are preserved by pullbacks we shall be able to give some results
about common fibrations and coverings.

Graphs form a topos (i.e., a cartesian closed category with finite limits and a subobject
classifier—see [20]) ¢ that can be handily described as the functor category Sets® ", where
% is the category with two objects NV and A and two parallel arrows s,t: N — A between
them. Analogously, symmetric graphs form a topos . that can be described as Sets?”,
where & is built from % by adding an involution on A satisfying obvious equations w.r.t. s
and t. Both topoi are complete and cocomplete, as they are presheaf categories, and have
been intensively studied [18, 33, 35, 34|. Note that the inclusion € — 2 induces a functor
& — ¢, which forgets the symmetry and has a left adjoint Sym(—) building the formal
symmetrization whose elementary description was given in Section 2.

There is a very elegant characterization of categorical discrete (op)fibrations that can
be easily carried over to the case of graphs (we thank Frank Piessens for bringing this fact
to our attention): a morphism ¢ : G — B is a fibration iff the following square

Ag —> Ng (1)

‘| |+

Ap——Np

is a pullback (dually, ¢ is an opfibration iff the analogous square with ¢ replaced by s
is a pullback). Note that the square is simply half of the commutativity conditions of a
graph morphism. This characterization makes it obvious that (symmetric) (op)fibration
are closed by composition, that is, there is a subcategory of ¢ that contains all graphs
and (symmetric) (op)fibrations between them. Moreover, in the following commutative
diagram

Ac O, Ag —4= Ng

| b

Ap ﬁ) Ap — Np
the right square is a pullback iff ¢ is a fibration, and the left square is a pullback iff ¢
commutes with the symmetries of G and B. If both things happen, then the whole square
is a pullback, and this is true iff ¢ is also an opfibration (remember that s = to(7)). Thus,
we have proved that

Proposition 6.1 A symmetric graph morphism is a fibration iff it is an opfibration. In
particular, if it is an (op)fibration it is a covering projection as well.

It is interesting to remark that the construction of the universal fibration can be expressed
by a very simple adjunction: consider the category ¥, of rooted graphs, that is, graphs with
a selected node and morphisms that preserve it, and the category Sets®” of (undirected)
trees [17]. There is an obvious full and faithful functor I : Sets®” — &, that sends a
tree to an in-tree of ¥, having the root as selected node. The right adjoint to this functor
builds for every rooted graph, that is, for every graph G and every node x, a tree éx, and
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the counit v, : 1 (éx ) — G satisfies the following universal property: for every tree T' and
every graph morphism ¢ : I(T)) — G, there is a unique morphism of trees f : T'— G* that
makes the following diagram commute:

I(G®)

i 7 l .
// ’UG
G

I(T)

3

In particular, by choosing T" as a path we obtain a bijection between the nodes of I(éx) and
the paths of G terminating at x, which gives back the construction used in Theorem 3.2.
Note that, being I a full inclusion, one can essentially identify Sets*” with a subcategory
of ¢4,, and just say that there is a morphism v¢ : G* — G such that every morphism from
an in-tree to G' (with selected node x) lifts uniquely through v.

Also Theorem 3.1 has a categorical nature: indeed, it just claims that vf is the initial
object of the comma category of fibrations of rooted graphs having base G (with selected
node z). More explicitly, for each graph H with selected node y and each fibration ¢ :
H — @G such that ¢(y) = x there is a unique lifting of v along ¢, as in the following
diagram:

6.1 Pullbacks

The characterization given by diagram (1) allows us also to prove easily the graph coun-
terpart of the classical theorem [9, Proposition 8.1.15] about pullbacks of fibrations:

Theorem 6.1 The pullback of a fibration along an arbitrary morphism is a fibration.

Proof. Consider the following pullback square in ¢

J——G

w}ll |+

— > B

n
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where i : H — B is an arbitrary graph morphism. By pulling back the square (1) along 7,
we obtain the following commuting cube in Sets

Ac t Ng
/ | /
AJ NJ ®»
¥ P
v Ap———|—>Ng
A A
AH NH

where the three vertical sides adjacent to ¢ are pullbacks; by the associativity theorem |8,
Proposition 2.5.9], also the remaining side is a pullback, and thus v is a fibration. I

A simple dual argument and the remark that in presheaf categories limits are computed
pointwise leads to the following

Corollary 6.1 The pullback of an opfibration is an opfibration. The pullback of a (sym-
metric) covering projection is a (symmetric) covering projection.

Finally, the previous results allow us to relate common bases and common total graphs as
follows:

Theorem 6.2 Let G and H be graphs fibred over the same graph B. Then there is a
graph J C G x H fibred over G and H. In particular, if G and H are finite, loopless or
separated, so is J. The same holds for (symmetric) coverings.

Proof. All morphisms in the following pullback
J——=GC

|

H——B

where B is the common base of G and H, are fibrations by Theorem 6.1. To complete the
proof, recall that J has an injection in G x H, and that finite, loopless and separated graphs
are closed by formation of products and subobjects. The analogous proof for (symmetric)
coverings uses Corollary 6.1. 1

The fact that categorical fibrations are preserved by pullbacks cannot be used to prove
Theorem 6.1: indeed, the existence of a categorical fibration into the free category generated
by H does not imply the existence of a graph fibration inducing it. More generally, one
has to be careful in translating properties of categorical fibrations to graphs: for instance,
the projection G x H — H is not generally a fibration. However, by noting that products
preserve pullbacks one can easily show that

Theorem 6.3 If p: G — B, ¢ : H — C are fibrations then ¢ x ¢y : G x H - B x (Cis a
fibration. The same holds for (symmetric) coverings.
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The previous theorems have several interesting consequences. Recall that Leighton’s The-
orem [19] states that two undirected finite graphs with the same universal covering have
a common finite covering. We can immediately prove the analogous result for fibrations,
as by Theorem 4.2 two graphs have the same universal total graphs iff they have the same
minimum base, so Theorem 6.2 can be applied:

Corollary 6.2 Let G and H be graphs with the same universal total graphs. Then there
is a graph J C G x H fibred over G and H. In particular, if G and H are finite, loopless
or separated, so is J.

In force of our results about minimum covering bases, and with the same notation as in
Section 5, we can also state that

Corollary 6.3 Let G and H regular graphs of finite degree having the same universal
covering (i.e., having the same degree d). Then there is a graph J C G x H covering G
and H. In particular, if G and H are finite, loopless or separated, so is J.

The proof now uses the coverings projections on a d-bouquet whose existence is guaranteed
by Theorem 5.3. This result (which trivializes in the infinite case) cannot be obtained by
extending Leighton’s proof, for the latter strictly depends on the symmetry of the graphs
involved. An example of such a pullback is given in Figure 7; note that nodes in the
first column of the pullback are mapped to the central node of the five-node graph, while
the nodes in the first row can be mapped to any of the four nodes of the other graph;
the mapping of the remaining nodes is forced by the mapping of the arcs. By analogous

Figure 7: A pullback of two covering projections.

techniques, we also obtain the following theorem, which was essentially proved in the finite
case by Sachs [29] working directly with factorizations:

Corollary 6.4 Let G and H be Schreier graphs of the same degree. Then there is a
Schreier graph J C G x H covering G and H. If G and H are symmetric, finite, loopless
or separated, so is J.
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Proof. By Theorem 5.6, G and H cover (symmetrically) a bouquet, so we can apply The-
orem 6.2. Note that the graph J covers (symmetrically) a bouquet, so it is a (symmetric)
Schreier graph, by the other side of Theorem 5.6. 1

Theorem 6.3 yields also very simple proofs of some known facts: denoting with 1 the
1xi

terminal object of ¢ (the loop), we have that G x Ko — G x 1 = G, so G x Ky (the
Kronecker double covering of G) does cover G (symmetrically, if G is symmetric). This
is immediate, as the unique morphism i : Ko — 1 is a symmetric covering, so its product
with the identity gives rise to a symmetric covering as well. Analogously, denoting with

U,, the unidirectional n-cycle we have the less well-known fact that G x U, covers G, as
1xi

the product G x U,, — G x 1 = G shows.

6.2 The category of fibrations over a given base

Let us denote with Fib(—, B) the category of fibrations with base B, and morphisms given

by commuting triangles
! H
N
B

with 7 an arbitrary morphism of ¢. The following representation theorem mimics the
analogous result for discrete (categorical) fibrations:

G

Theorem 6.4 Fib(—, B) ~ Sets?”.

Proof. We prove the statement by constructing a functor © : Sets?” — Fib(—, B) that
will be shown to be an equivalence. To each functor F' : B°? — Sets we associate a graph
O©(F) as follows: the nodes of O(F') are the disjoint sum of the partial sections of F', while
the arcs are given by the disjoint sum of (the graphs of) the functions between sections.
More formally,

Neory = Z F(z) ={(z,e) | x € Np,e € F(x)}
zENp

Ae(ry = Z F(t(a)) = {(a,e) | a € Ap,e € F(t(a))}.

a€EAp

Adjacency is defined in the obvious way: s({a,e)) = (s(a), F(a)(e)) and t({a, e)) = (t(a),e).

A map ¢ : O(F) — B is then defined by ¢((z,€)) = x and ¢({a,e)) = a. A straightforward

calculation shows that ¢ is indeed a graph morphism, and more precisely a fibration.
Given a natural transformation ¢ : FF — G, the map

Z &+ No(r) = No(a)
rENp

is the node component of a graph morphism ©(&) whose arc component is given by

(a,¢) 2 (0, € (€))-
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We note that

O(&)(s((a,€))) = (&) ({s(a), F(a)(e))) = (s(a),&s(a) (F(a)(e)))
= (s(a), G(a)(§xa) (¢)) = 5({a, &uay (€))) = 5(O(E) (@, €))),

and similarly for the target map, so ©(&) is a graph morphism; finally, the triangle

O

can be easily proved to be commutative, so © is a functor. Fidelity of © is immediate (recall
that the node component of ©(¢) is the disjoint sum of the components of £), and fullness
can be shown by noting that a morphism n : O(F) — ©(G) in Fib(—, B) must map nodes
of the form (z,€) to nodes of the form (z,¢e’), so for each node x we can define £, (e) = ¢
when n({x,e)) = (x,€'); by a long but straightforward calculation suitably exploiting the
lifting property, £ turns out to be a natural transformation such that ©(¢) = 7.

To complete the proof, we just have to show that every object ¢ of Fib(—,B) is

isomorphic to the image of an object I of Sets®”: this can be easily done by defining
F(z) = ¢~ (), and F(a®)(y) = s(a¥) for all nodes y in the fibre of s(a’?) = t(a). I

Denoting with Cov(—, B) the obviously defined category of coverings of B, a proof abso-
lutely analogous to that of Theorem 6.5 shows that

Theorem 6.5 Cov(—, B) ~ SetsSy™(5)”

In the case of symmetric graphs, we can define categories of symmetric fibrations or cover-
ings with base B, obtaining the following

Theorem 6.6 For a symmetric graph B, SymFib(—, B) ~ SymCov(—, B) ~ Sets?” .

Note that the theorems above prove a fundamental fact—namely, that Fib(—, B) (as well as
Cov(—, B) and SymCov(—, B)) is a topos! (This does not happen in the categorical case
as Cat is not a topos.) Besides, they give a nice geometrical interpretation to presheaves
over free categories.

The topos structure of Fib(—, B) will not be studied here, but we want to remark
that representable functors over x of Sets”” are mapped by the equivalence above to the
universal fibration v% : B* — B, which gives still another categorical characterization of
its construction. Analogously, in the case of coverings the representable functor over x
of SetsSY™(B)” g (mapped to) the universal covering at z, and if B is symmetric the
representable functor over z of Sets?” is (mapped to) the universal symmetric covering
at z.

Thus, the Yoneda Lemma, which gives a full embedding B — Sets?” (B — SetsSym(B)™
in the case of coverings) where each node of B is mapped to its representable functor, shows
in the case of (symmetric) coverings that the universal (symmetric) covering is the same
along any connected component of B, since a walk in B is mapped to an isomorphism in
Sets””, which is equivalent to an isomorphism in SymCov(—, B). In fact the Yoneda
Lemma proves even more, namely that such an isomorphism commutes with the universal
(symmetric) covering projections.
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The object component of the equivalence described in Theorem 6.6 is well known:
indeed, it essentially gives the representation of coverings (of undirected graphs) as graphs
derived by permutation voltage assignments |14]. The categorical version, however, allows
one not to choose a fixed set X for the fibres (and correspondingly the symmetric group on
X for voltages), but rather to work in full generality; functoriality and naturality guarantee
coherence.

The morphism component of the equivalence was not studied originally, but it is a cor-
nerstone in Hofmeister’s computation of the number of covering projections up to isomor-
phism [16]; he finds conditions on the permutation generating the covering that correspond
exactly to the naturality squares. Thus, Theorems 6.4 and 6.5 are the natural general-
ization of the abovementioned results to fibrations and coverings of arbitrary graphs, and,
correspondingly, one can use them to count isomorphism classes in Fib(—, B). In the next
section we work out an example in this direction, using standard counting techniques.

As a final remark, we want to make the relation between graph bundles in the sense of
Pisanski and Vrabec [27] and categorical fibrations explicit. Another fundamental topos of
graphs is the topos Z of symmetric reflexive graphs [18]. In a symmetric reflexive graph
every node x has an assigned identity loop €, that is preserved by morphisms and fixed by
the symmetry (so it is a semi-edge). More intuitively, we can identify such loops with nodes,
and say that the morphisms in the topos are degenerate, in the sense that they can collapse
an arc to a node (in fact, they just send the arc to the identity loop). Every symmetric
reflexive graph has an associated category (in fact, a groupoid), built by the left adjoint to
the forgetful functor sending a category to its base symmetric reflexive graph, in which the
identity loops are exactly the identities of the category, and the symmetry is defined by
f = f~!. Again, we define a fibration between symmetric reflexive graphs as a morphism
that induces a fibration between the free categories they generate. Then, graph bundles in
the sense of Pisanski and Vrabec turn out to be fibrations of symmetric reflexive graphs,
but of a particular kind, that we can characterize as follows: With each object F' of the
category ZB” , with B in %, we can associate a fibration G — B in % using a construction
analogous to the proof of Theorem 6.4; more in detail, the total graph G is given by the
disjoint union of the images F(x) when x ranges through the nodes of B, enriched with
an arc from p € F(z) to g € F(y) for every arc a € B from z to y such that F(a)(p) = ¢;
the morphism from the total space to the base is now obvious, and such fibrations are
exactly the bundles in the sense of Pisanski and Vrabec. An axiomatic characterization of
the categorical fibrations induced by such bundles is not currently known.

6.3 Counting minimal fibrations of the cycle

Let C),, be the bidirectional cycle on n > 2 nodes, having Z, as node set and an arc from
x to x £ 1. We want to count the number of nonisomorphic minimal fibrations of C,,, that
is, the number of isomorphism classes of Fib(C),, B), where B is the 2-bouquet (its arcs
being denoted by a and b). By Theorem 6.4, every fibration in Fib(C,,, B) is equivalent
to a functor F' : B — Sets that necessarily satisfies the equation F(a°?)(z) — x =
x—F(b°?)(x) € {—1,1} for every x € Z,, (one has |F(a?)(z) —z| = |F(b°?)(z) —z| = 1 by
the definition of adjacency in C,, and F(a°?)(x) # F(b°P)(x), for C,, is separated). Such
a functor is bijectively associated with the function (ambiguously denoted with) F': Z,, —
{—1,1} satistying F(x) = F(a°")(x) — «, so there are 2" fibrations from C,, to B.
To apply Burnside’s Lemma, we note that Aut(C),) acts by precomposition on Fib(C,,, B)

and that the orbits of this action are exactly the isomorphism classes we are to count. By
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the previous remarks, this is the same as counting the isomorphism classes of functions
Z, — {—1,1} under the (obviously induced) action of Aut(C,). Note that the latter ac-
tion is not the standard action of Aut(C),) on a two-coloured cycle, so one cannot directly
apply coloured counting techniques such as Polya’s Theorem or deBruijn’s formula.

By definition of natural equivalence, an automorphism « of C), fixes a fibration (repre-
sented as a functor F' : B’ — Sets) exactly when the naturality equations « o F'(a’?) =
F(a°?)oa and ao F(b°P) = F(b°P) o «v are satisfied; but the latter can be rewritten in the
following simple form

a(z £ F(x)) = a(z) £ F(a(x)) (2)
using the function F' : Z,, — {—1,1} we just defined. Note that Aut(C),,) has 2n elements,
divided as follows:

i). n rotations (including the identity) 1, p, p2,...,, p*~ L, defined by p*(z) = = + k;
P, P P P

(ii). symmetries with fixed points; if n is odd, then there is one symmetry oy, for each node
(the symmetry oy, has only k as fixed point), defined by oy (z) = 2k — x; if n is even
there are n/2 symmetries with two fixed points (say 0o/2; 01,14n/2, -5 Onj2—1,n-1),
defined again by oy, ;1 /2(7) = 2k — z;

(iii). in the even case, there are also n/2 symmetries without fixed points 7q, 71, ..., T /2-1,
defined by 7 (x) = 2k — 2 + 1.

Correspondingly, equation (2) provides the following conditions:

(i). in order for p* to fix F' we must have F(z) = F(x + k); thus exactly (n, k) values (by
(n, k) we denote the greatest common divisor of n and k) of F' can be independently
chosen, amounting to 2("*) fibrations fixed by p¥;

(ii). a symmetry o with fixed points imposes the condition F(x) = —F(2k — x), which is
never satisfiable (just take x = k);

(iii). for the remaining case, i gives the constraint F'(z) = F(2k — x + 1); thus, exactly
n/2 values of F' can be independently chosen, amounting to 2% fibrations.

Applying Burnside’s Lemma we obtain that the number of orbits of the action of Aut(C,,),
that is, isomorphism classes in Fib(C,,, B), is

1 n—1 1 n—1 on
o (Z 2000) 1 (n even)n?gfl) =5, Z (k) 4 (n even)22 72 ~ o’ (3)
k=0 k=0

where we used Iverson’s notation [12]: a (logical) formula enclosed in parenthesis takes
value 1 when it is true, 0 otherwise.

For sake of completeness, we note that also Aut(C),) x Aut(B) acts on Fib(C),, B); in
this case, the orbits are larger than the isomorphism classes of Fib(C,,, B), as two fibrations
live in the same orbit if they differ by precomposition with an automorphism of C,, or by
postcomposition with an automorphism of B, but we can still compute their number (more
precisely, in this case the orbits are the isomorphism classes of the category having as
objects fibrations and as morphisms commutative squares). For pairs of automorphisms
with nontrivial second component £°P, equation (2) becomes

a(z £ F(x)) = ale) F Fla(x)),

and we can easily extend our previous considerations as follows:
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[ » [3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
3) [2 4 4 9 10 22 30 62 94 192 316 623 1096 2122 3856 7429 13798 26500
@,65) |2 4 4 8 9 18 23 44 63 122 190 362 612 1162 2056 3914 7155 13648

Table 3: Some values for the number of nonisomorphic minimal fibrations of C,.

in order for (p¥,£°P) to fix F' we must have F(z) = —F(x + k); this equation is
satisfiable only if n/(n, k) is even, and in that case exactly (n, k) values of F' can be
independently chosen, amounting to 2(™*) fibrations;

(i).

(0,€°) imposes the condition F(z) = F(2k — z): this amounts to 227! fibrations in

the even case and to 2" fibrations in the odd case;

(ii).

(i) -

for the remaining case, (7, £°P) gives the constraint F(x) = —F(2k — x + 1); thus,
exactly n/2 values of F' can be independently chosen, amounting to 27/2 fibrations.

Summing up, in the even case we have

n—1 n—1
ﬁ(Z[H(n/ (n, k) even)[2) 4 n23+1) ﬁ S [+ (n/(n, k) even)]2F) 42571 (4)
k=0 k=0

orbits, while in the odd case we obtain

1 n—1 — 1 n—1 5
= ( 3 otk n2"7> = =3 ok 9t
4n = 4n =

Both previous formulae are asymptotic to 2" /4n. This means that the number of orbits
of the action of Aut(C,) on minimal fibrations of an n-cycle is asymptotically twice the
number of the orbits of the action of Aut(C,) x Aut(B)% (we give some exact values
in Table 3), that is, £°7 almost never fixes an orbit of Aut(C),). Recalling that an auto-
morphism S8 of B can be lifted along a morphism ¢ : G — B if there is an automorphism
« of G such that o = ¢ o B, we can see that £ can almost never be lifted along a
minimal fibration of C),. More precisely, £ can be lifted along ¢ iff («, £°P) fixes ¢ for some
automorphism « of C,. Thus, our previous considerations show also that

(5)

Theorem 6.7 The nontrivial automorphism £ of the 2-bouquet can almost never be lifted
along a minimal fibration of C,,. More precisely,

[{p € Fib(Cy,, B) | £ can be lifted along o}

|Fib(Cy,, B)| = 0(n/2%).

We remark that the analogous problem for (symmetric) coverings is rather trivial: a slight
modification of the previous techniques shows that

| Cov(C,, B)/ Aut(C,)| = | Cov(C,, B)/ Aut(C),) x Aut(B)°?| =1+ (n even)

|SSymCov(C,, B)/ Aut(C,)| = | SymCov(C,, B)/ Aut(C,,) x Aut(B)"| =1,
where we assumed that the symmetry of B is nonidentical (in the other case, the result
is 1 if n is even and 0 otherwise). The problem of computing the number of isomorphism

classes of the category Fib(G,G) for an arbitrary finite graph G is of course much more
difficult, and will be pursued elsewhere.
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7 Open problems

We conclude by formulating a series of open problems concerning fibrations of graphs; of
course, the list given below has no claim of being exhaustive.

Problem 1 (Generalized bounds for Theorem 4.5) The theorem is true for (sym-
metric) coverings, but it is not known whether the bound given is tight in this case.

Problem 2 (Counting fibration-prime graphs) Given a natural number m, count the
number of (strongly connected) graphs with m arcs that are fibration prime (analogously,
one can fix the the number of nodes and a bound k for the number of parallel arcs).
The same problem can be posed for (symmetric) coverings. Note that the knowledge of
the asymptotic distribution of fibration (covering)-prime graphs would have immediate
applications, as, for instance, it would allow one to estimate the probability of success of
an anonymous election algorithm (see Section 2.5).

Problem 3 (Complete Table 1 and 2) Classify graphs that cover a bouquet via a pro-
jection associated with an action, and symmetric graphs with semi-edges covering symmet-
rically a bouquet.

Problem 4 (Classification of total graphs over B) Given a strongly connected fibration-
prime graph B (or a set of such graphs), classify the graphs that are fibred over B. An
analogous classification can be carried out for (symmetric) coverings, similarly to Section 5.

An even more challenging question is the classification of graphs that cover no prime cov-
ering other than B.

Problem 5 (Counting fibrations) Count the number of nonisomorphic fibrations over a
fixed graph B whose total space has a given number of nodes (or is isomorphic to another
fixed graph G). In particular, count the isomorphism classes of Fib(G, @) (for related
results on undirected graph coverings, see [16]).

Problem 6 (Fibrations of reflexive graphs) An interesting theoretical problem is the
study of fibrations in the topos of reflexive graphs, as in that case the fibrations induced
between free categories are not necessarily discrete, so Definition 2.1 does not apply.

Problem 7 (Deciding nonemptyness of Fib(G, B)) Given finite graphs G and B, it
is decidable whether G is fibred over B. Study the complexity of this decision problem, in
particular for fixed G or B.
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