
148

LXM: Better Splittable Pseudorandom Number Generators
(and Almost as Fast)

GUY L. STEELE JR., Oracle Labs, USA
SEBASTIANO VIGNA, Università degli Studi di Milano, Italy

In 2014, Steele, Lea, and Flood presented SplitMix, an object-oriented pseudorandom number generator (prng)

that is quite fast (9 64-bit arithmetic/logical operations per 64 bits generated) and also splittable. A conventional

prng object provides a generate method that returns one pseudorandom value and updates the state of the

prng; a splittable prng object also has a second operation, split, that replaces the original prng object with

two (seemingly) independent prng objects, by creating and returning a new such object and updating the

state of the original object. Splittable prng objects make it easy to organize the use of pseudorandom numbers

in multithreaded programs structured using fork-join parallelism. This overall strategy still appears to be

sound, but the specific arithmetic calculation used for generate in the SplitMix algorithm has some detectable

weaknesses, and the period of any one generator is limited to 264.

Here we present the LXM family of prng algorithms. The idea is an old one: combine the outputs of two

independent prng algorithms, then (optionally) feed the result to a mixing function. An LXM algorithm uses

a linear congruential subgenerator and an F2-linear subgenerator; the examples studied in this paper use a

linear congruential generator (LCG) of period 216, 232, 264, or 2128 with one of the multipliers recommended

by L’Ecuyer or by Steele and Vigna, and an F2-linear xor-based generator (XBG) of the xoshiro family or

xoroshiro family as described by Blackman and Vigna. For mixing functions we study the MurmurHash3

finalizer function; variants by David Stafford, Doug Lea, and degski; and the null (identity) mixing function.

Like SplitMix, LXM provides both a generate operation and a split operation. Also like SplitMix, LXM

requires no locking or other synchronization (other than the usual memory fence after instance initialization),

and is suitable for use with simd instruction sets because it has no branches or loops.

We analyze the period and equidistribution properties of LXM generators, and present the results of

thorough testing of specific members of this family, using the TestU01 and PractRand test suites, not only on

single instances of the algorithm but also for collections of instances, used in parallel, ranging in size from 2 to

224. Single instances of LXM that include a strong mixing function appear to have no major weaknesses, and

LXM is significantly more robust than SplitMix against accidental correlation in a multithreaded setting. We

believe that LXM, like SplitMix, is suitable for “everydayž scientific and machine-learning applications (but

not cryptographic applications), especially when concurrent threads or distributed processes are involved.

CCS Concepts: · Mathematics of computing→ Random number generation; · Computing method-

ologies→ Parallel algorithms.

Additional Key Words and Phrases: random number generator, pseudorandom, compound generator, mixing

function, splittable, parallel, concurrent, DotMix, SplitMix, LXM, RNG, PRNG

ACM Reference Format:

Guy L. Steele Jr. and Sebastiano Vigna. 2021. LXM: Better Splittable Pseudorandom Number Generators

(and Almost as Fast). Proc. ACM Program. Lang. 5, OOPSLA, Article 148 (October 2021), 31 pages. https:

//doi.org/10.1145/3485525

Authors’ addresses: Guy L. Steele Jr., Oracle Labs, 35 Network Drive UBUR02-313, Burlington, Massachusetts, 01803, USA,

guy.steele@oracle.com; Sebastiano Vigna, Università degli Studi di Milano, Italy, sebastiano.vigna@unimi.it.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART148

https://doi.org/10.1145/3485525

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3485525
https://doi.org/10.1145/3485525
https://doi.org/10.1145/3485525

148:2 Guy L. Steele Jr. and Sebastiano Vigna

1 INTRODUCTION

Many algorithms used for physical simulations and machine learning, ranging from Monte Carlo
methods to stochastic gradient descent, consume sequences of values that are either chosen “truly
at randomž (by some sufficiently unbiased physical process) or generated by a deterministic
computation chosen in hopes that the computed values will “appear to be random,ž at least for the
purposes of the specific application. Such computed sequences of values are called pseudorandom.

Any one who considers arithmetical methods of producing random digits is, of course, in a state of
sin. For, as has been pointed out several times, there is no such thing as a random numberÐthere
are only methods to produce random numbers, and a strict arithmetic procedure is of course not
such a method. [von Neumann 1951]

Von Neumann made the preceding remark as part of his analysis of his middle-square method:
In obtaining 𝑦 as the middle ten [decimal] digits in the square of a ten-digit number 𝑥 , we are really
mapping 𝑥 onto 𝑦 by a certain sawtoothed discontinuous curve 𝑦 = 𝑓 (𝑥), for 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1.
When we take 𝑥𝑖+1 = 𝑓 (𝑥𝑖) for 𝑖 = 1, 2, 3, . . ., this curve will gradually scramble the digits of 𝑥1 and
produce something fairly pseudo-random. [von Neumann 1951]

How can we know whether computed sequences “appear to be randomž? By testing them:
A pseudo-random sequence is a vague notion embodying the idea of a sequence in which each term
is unpredictable to the uninitiated and whose digits pass a certain number of tests traditional with
statisticians and depending somewhat on the uses to which the sequence is to be put. [Lehmer 1951]

But what tests should be used?
We are here dealing with mere łcooking recipesž for making digits; probably they cannot be justified,
but should merely be judged by their results. Some statistical study of the digits generated by a
given recipe should be made, but exhaustive tests are impractical. If the digits work well on one
problem, they seem usually to be successful with others of the same type. [von Neumann 1951]

Indeed, the very idea of testing a sequence to see whether it is “randomž is somewhat paradoxical:
. . . we would like to point out that all tests have a subjective element and that no test or sequence of
such will establish a sequence of digits as being random.. . . if digits were generated by a [truly]
random process then any method that rejected any sequence would be faulty. [Hammer 1951]

Nevertheless, Forsythe did apply statistical tests to three variations of von Neumann’s middle-square
method; two failed quickly, and the third was then subjected to more rigorous tests:

The null hypothesis was formulated that, insofar as ordinary statistical tests can detect, method C is
a process for generating independent, equidistributed digits. To test the null hypothesis, four 𝜒2 tests
devised by Kendall and Babington Smith were applied [to a sequence of 100,000 generated digits]:
(a) frequency test: frequency of 0, 1, 2, . . . , 9 in first 50,000 digits;
(b) serial test: frequency of 00, 01, . . . , 99 in first 50,000 digits;
(c) gap test: frequency of lengths of gaps between successive zero digits in entire sample;
(d) poker test: frequency of combinations 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑏, 𝑎𝑎𝑏𝑏, 𝑎𝑎𝑏𝑐 , 𝑎𝑏𝑐𝑑 in all 25,000 groups of four
consecutive digits. [Forsythe 1951]

But while “method Cž passed three of the tests, it failed test (b):
In summary, method C is not recommended for the generation of random digits, because the
distribution of pairs of digits appears to be variable and not uniform. [Forsythe 1951]

The evolution of pseudorandom number generator (prng) algorithms over the last seven decades
may be fairly characterized as a competition between generators and tests, driven in part by
algorithmic improvements and in part by Moore’s Law. Ideally, each new value should be generated
in polynomial time, but the generator output should not be predictable in polynomial time [Blum
and Micali 1984]; there are generators satisfying this definition, but they are computationally

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:3

expensive and they depend presently on hardness assumptions [Blum et al. 1986]. In practice one
often trades quality for speed; statistical testing helps to avoid trading away too much quality.
There are also indirect methods for judging the quality of a prng algorithm, involving mathe-

matical analysis of the code rather than running the code and testing the output. One of the earliest
and most successful is the spectral test [Coveyou and Macpherson 1967; see also Knuth 1998, ğ3.3.4],
which is applicable to what we now call linear congruential generators [Lehmer 1951; Rotenberg
1960; Thomson 1958], in which the state of the generator is advanced by performing integer multi-
plication by a fixed constant and then optionally adding another fixed constant. Marsaglia [1968]
observed that all purely multiplicative congruential prng algorithms have unexpected biases when
used to generate 𝑛-tuples of values; the spectral test quantified this bias, allowing tabulation of
multipliers that minimize this bias [L’Ecuyer 1999b; Steele and Vigna 2021]. These results generalize
to all linear congruential generators.
Some generators, instead, treat their state as a vector of values in the field F2 (multiplication

is matrix-vector multiplication, often optimized by choosing the constant matrix so as to allow
implementation using only a small number of shift and xor instructions), and these are called
F2-linear generators. These have their own rich history, including Linear Feedback Shift Register
techniques [Golomb 2006, 2017; Goresky and Klapper 2012; Wolfram 2016] and Marsaglia’s “xorshift
generatorsž [Brent 2004; Marsaglia 2003]. More recent examples are the xoroshiro and xoshiro

algorithms [Blackman and Vigna 2018; Vigna 2014ś2021], which we build upon in this paper. Briefly
put, they provide a systematic way to derive good F2-linear functions that can be computed cheaply
using only xor, shift, and rotate instructions; some versions use a “scramblerž (a fast output
function, weaker than a full-blown hash function) to compensate for specific small flaws.
The appeal of linear generators of either kind is that they are much more amenable to mathe-

matical analysis. This is a double-edged sword: it is easier to prove certain favorable properties but
also easier to expose deficiencies.
Researchers began to explore compound generators. MacLaren and Marsaglia [1965] used one

linear generator to “shufflež the sequence produced by another. A more recent and widely used
example is MRG32k3a [L’Ecuyer 1999a], which additively combined the outputs of two generators
that have the same algorithmic structure but different moduli. There was also limited exploration
of compounds whose component generators are of different kinds [L’Ecuyer and Granger-Piché
2003], for example one using integer multiplication and one using bit-matrix multiplication.

Congruential generators are liked, but not well-liked; . . . combination generators seem bestÐif the
numbers are not random, they are at least higgledy piggledy. [Marsaglia 1985]

In the meantime, extensive test suites were developed, starting in the 1990s: Diehard [Marsaglia
1995; Marsaglia and Tsang 2002], TestU01 [L’Ecuyer and Simard 2007, 2013; Simard 2009], Dieharder
[Brown et al. 2003ś2006], and the NIST Statistical Test Suite [Rukhin et al. 2001, 2010]. (L’Ecuyer
has recently provided a detailed history of RNG algorithms and testing procedures [L’Ecuyer 2017].)

With the emergence of multiprocessor (and later, multicore) computer architectures, users needed
prng algorithms for multithreaded computations. If you simply use one copy of a specific algorithm
on each processor, there is a risk that the generated sequences may be statistically correlated in
some way. One approach is to use an algorithm that can generate an extremely long sequence, then
make sure that each processor uses a different subsequence of that long sequence. This led to the
idea of a jump function that can quickly compute some far-distant future element of the sequence.
(One strength of linear generators is that it is relatively easy to construct such jump functions.)

Another approach to parallel prng construction is to break the problem into two parts: first,
make sure that the processors generate sequences that are distinct but not necessarily “random,ž
then hash each generated value. An extreme variation (PHILOX) is to give every processor a
counter, initialize the counters to widely spaced integers (the “jump functionž is trivial), then

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

148:4 Guy L. Steele Jr. and Sebastiano Vigna

apply a (perhaps cryptographically strong) hash function to the successive integers produced
by each counter [Salmon et al. 2011]. Another approach (DotMix) is to maintain a “pedigreež
vector that is guaranteed to be different for every pseudorandom value to be generated (the vector
is extended every time a parallel computation is forked, and the last entry is incremented as
necessary); pseudorandom values are produced by hashing the vector [Leiserson et al. 2012]. The
SplitMix algorithm, which began as an attempt to optimize the performance of DotMix, uses
Weyl generators (counters modulo 2𝑤 , where each increment is an odd number and the increments
are likely different for each processor) and then applies a hash function that is only moderately
strong but much faster [Steele, Lea, and Flood 2014]; SplitMix had a known weakness that certain
unfortunate choices for the increment might result in sequences that fail the test suites, but the
designers described and implemented a technique for avoiding these poor choices in practice.1 The
SplitMix algorithm was implemented as class SplittableRandom [Oracle Corporation 2014b] in
the library for the Java® programming language as part of Java Development Kit 8 (JDK8).
PHILOX was tested using TestU01; DotMix was tested using Dieharder; SplitMix was tested

using both. In the last decade another test suite, PractRand [Doty-Humphrey 2011ś2021], has
emerged, that has largely superseded Dieharder and is especially useful as a complement to TestU01
because PractRand is extremely fast, has the ability to “fail early,ž and can be run as long (or as
short) as desired, producing ever more precise results as it goes.

I think nobody who is practically concerned will want to use a sequence produced by any method
without testing it statistically, and it has been the uniform experience with those sequences that it
is more trouble to test them than to manufacture them. Hence the degree of complication of the
method by which you make them is not terribly important; what is important is to carry out a
relatively quick and efficient test. [von Neumann 1951]

It is now standard practice to use PractRand to test at least 4 terabytes (perhaps even 16 terabytes)
of prng output. An algorithm that passes that test may then be given to TestU01 for final testing.
Computers are now fast enough, and have enough main memory, that it is feasible to perform

extremely sensitive collision tests [Knuth 1998, ğ3.3.2.I] that use billions of bins.
In this paper, we return to the idea of constructing compound generators by adding outputs

from two simple generators of different types: a linear congruential generator and a xo(ro)shiro
generator. It turns out that PractRand can detect flaws in the low bits of these outputs, so we
furthermore use a mixing function of the same kind used by SplitMix. The result is the LXM family
of algorithms presented here, which we have tested using both PractRand and TestU01.

The LXM algorithm is a fairly simple idea that combines building blocks already in the literature
in ways already studied in the literatureÐyet this precise combination seems not to have been

1The Weyl generator used in SplitMix is, in effect, a trivial linear congruential generator that “multiplies by 1ž and then

adds a constant 𝛾 ; the generated sequence is 𝑥𝑘 = (𝑘𝛾 + 𝑥0) mod 2𝑤 , which is not at all random. The quality of SplitMix

output depends almost entirely on the quality of its mixing function, which can turn that linear sequence into a reasonably

random-looking sequence unless 𝛾 is so poorly chosen that consecutive values 𝑥 𝑗 and 𝑥 𝑗+1 are the same in almost all

bit positionsÐin that case, the mixing function isn’t quite good enough to map consecutive Weyl-generator outputs to

sufficiently different final values. This can happen in two different ways: (a) 𝛾 is almost all 0-bits or almost all 1-bitsÐthen

adding 𝛾 to 𝑥 𝑗 doesn’t change very many bits; (b) the low 𝑘 bits of 𝛾 and the low 𝑘 bits of 𝛾 >>> 𝑘 are very similar, where

𝑘 is the shift distance used in the first step x ^= (x >>> k); of the mixing functionÐin that case, adding 𝛾 to 𝑥𝑘 will tend

to change two groups of bits in much the same way, and then the shift-xor step of the mixing function will tend to cancel

that change in the 𝑘 low-order bits. The remaining steps of the mixing function are not good enough to compensate for this

effective “lessening of randomnessž in the first step. A further wrinkle is that such weaknesses (of either type, (a) or (b)) can

also occur when 𝛾 itself does not have either of these properties but some small integer multiple of 𝛾 does; for example,

if 3𝛾 is almost all 0-bits, then for every 𝑘 , 𝑥𝑘 and 𝑥𝑘+3 will likely be so similar that the mixing function can’t map them

to sufficiently different final values. The designers of SplitMix anticipated case (a), but not case (b) or the further wrinkle

about small multiples. It is possible to detect and avoid these other cases, but that would make the code more complicated.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:5

previously studied systematically or put into widespread practice. The principal contributions of
this paper are explaining why specific components were chosen and why they were combined in a
specific way, analyzing certain properties of the combination, comparing this structure to prior
work, and empirically probing for weaknesses through detailed quality tests and timing tests.

Section 2 describes the structure of the LXM algorithm in pragmatic terms and presents Java code
for two versions. Section 3 explains how the split operation is performed for LXM. Section 4 defines
special notations and terminology used in this paper. Section 5 presents a more mathematical
description of the LXM algorithm, and Section 6 discusses properties of the algorithm, such as
period and equidistribution. Section 7 presents results of testing for statistical quality; Section 8
presents timing tests for both LXM and SplitMix. Section 9 goes into more detail about how to
split and jump LXM generators. Section 10 provides advice on choosing a prng algorithm for a
specific application. Related work is cited in Section 11; conclusions are in Section 12.

2 THE LXM GENERATION ALGORITHM

A member of the LXM family of algorithms for word size𝑤 (where𝑤 is any non-negative integer,
but typically either 64 or 32) consists of four components:

• L: a linear congruential pseudorandom number generator (LCG) with a 𝑘-bit state 𝑠 , 𝑘 ≥ 𝑤

• X: an F2-linear [L’Ecuyer and Panneton 2009] pseudorandom number generator (we use the
term XBG, for “xor-based generatorž) with an 𝑛-bit state 𝑥 , 𝑛 ≥ 𝑤

• a simple combining operation on two𝑤-bit operands that produces a𝑤-bit result
• M: a bijective mixing function that maps a𝑤-bit argument to a𝑤-bit result

The combining operation should have the property that if either argument is held constant, the
resulting one-argument function is bijective; typically it is either binary integer addition ‘+’ or
bitwise xor ‘⊕’ on𝑤-bit words. In most practical applications 𝑘 and 𝑛 are integer multiples of𝑤 .

The generate operation for an LXM generator is described by the following pseudocode, where
global variable 𝑠 is the LCG state (a non-negative integer), global variable 𝑡 is the XBG state (a bit
vector), multiplier𝑚 is an integer such that (𝑚 mod 8) = 5, additive constant 𝑎 is an odd integer,
and update matrix𝑈 is an 𝑛 ×𝑛 matrix of bits. Elements of the product of matrix𝑈 and a bit vector
of length 𝑛 are computed in the two-element field F2 (addition is xor). In practice,𝑈 is chosen so
that such matrix-vector products can be computed by using a small number of instructions such as
xor, shift, and rotate operating on𝑤-bit words.

generate() :
𝑧 ← mix (combine(𝑤 high-order bits of 𝑠,𝑤 bits of 𝑡))
𝑠 ← LCG_update(𝑠)
𝑡 ← XBG_update(𝑡)
return 𝑧

LCG_update(𝑠) : return (𝑚𝑠 + 𝑎) mod 2𝑘

XBG_update(𝑡) : return 𝑈𝑡

This pseudocode uses the standard trick of using the old state values of the subgenerators to
compute the result to be returned; this allows the state updates for the two subgenerators to be
overlapped or interleaved not only with each other but with the computation of the combining and
mixing functions, which may be advantageous on processors that can execute multiple instructions
concurrently.
Figure 1 shows a specific implementation in the Java programming language of the generate

operation for 𝑤 = 64, 𝑘 = 64,𝑚 = 128. The period of the LCG is 264. The XBG is xoroshiro128
version 1.0 [Blackman and Vigna 2018], which has a period of 2128 − 1. The combining function is
binary addition. The mixing function is a variant of the MurmurHash3 mixing function [Appleby

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

148:6 Guy L. Steele Jr. and Sebastiano Vigna

private static final long M = 0xd1342543de82ef95L; // Fixed multiplier

private final long a; // Per-instance additive parameter (must be odd)

private long s, x0, x1; // Per-instance state (x0 and x1 are never both zero)

public long nextLong() {

// Combining operation

long z = s + x0;

// Mixing function (lea64)

z = (z ^ (z >>> 32)) * 0xdaba0b6eb09322e3L;

z = (z ^ (z >>> 32)) * 0xdaba0b6eb09322e3L;

z = (z ^ (z >>> 32));

// Update the LCG subgenerator

s = M * s + a;

// Update the XBG subgenerator (xoroshiro128v1_0)

long q0 = x0, q1 = x1;

q1 ^= q0;

q0 = Long.rotateLeft(q0, 24);

q0 = q0 ^ q1 ^ (q1 << 16);

q1 = Long.rotateLeft(q1, 37);

x0 = q0; x1 = q1;

// Return result

return z;

}

Fig. 1. Java code for the generate operation of an LXM generator with period 264 (2128 − 1)

2011, 2016] identified by Doug Lea. The additive parameter a may be initialized to any odd integer,
and the state variables s, x0, and x1 may be initialized to any values as long as x0 and x1 are not
both zero. Because the periods of the subgenerators are relatively prime, the overall period of this
LXM generator is 264 (2128 − 1) = 2192 − 264.

Figure 2 shows a second specific implementation, this time for𝑤 = 64, 𝑘 = 128,𝑚 = 256. It uses
the same 64-bit mixing function but uses a different (256-bit) XBG, xoshiro256 [Blackman and
Vigna 2018]. It also illustrates some interesting engineering tradeoffs when implementing a 128-bit
LCG using 64-bit arithmetic. Computing the (128-bit) low half of two 128-bit operands requires
computing the 128-bit product of the (64-bit) low halves, plus the (64-bit) low halves of products of
two pairs of 64-bit values, each consisting of the high half one of 128-bit operand and the low half
of the other. But testing seems to show that there is little extra benefit of using a 128-bit multiplier
over a 65-bit multiplier; on the other hand, theory tells us that a 64-bit multiplier will produce an
LCG of lower quality [Steele and Vigna 2021]. Therefore we choose to use a multiplier of the form
264 +𝑚 where𝑚 < 264 and of course (𝑚 mod 8) = 5; this eliminates one 64-bit multiplication in the
implementation. On the other hand, there is a benefit to be gained by using a full 128-bit additive
parameter rather than settling for 64 bits. The code uses two long values ah and al to represent
the high and low halves of the additive parameter, and similarly uses two long values sh and sl to
represent the high and low halves of the LCG state. (Because Java has not yet implemented the
method Math.unsignedMultiplyHigh, code for this operation is included in Figure 2, using the
technique described in Hacker’s Delight [Warren 2012, ğ8.3, p. 175].)

These implementations, and some others, are scheduled to be incorporated into a new package
java.util.random as part of JDK17. This package will also include a new API intended to better

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:7

private static final long ML = 0xd605bbb58c8abbfdL; // Low half of fixed multiplier

private final long ah, al; // Per-instance additive parameter (al must be odd)

private long sh, sl, x0, x1, x2, x3; // Per-instance state (x0, x1, x2, x3 not all 0)

private long unsignedMultiplyHigh(long a, long b) {

return Math.multiplyHigh(a, b) + ((a >> 63) & b) + ((b >> 63) & a);

}

public long nextLong() {

// Combining operation

long z = sh + x0;

// Mixing function (lea64)

z = (z ^ (z >>> 32)) * 0xdaba0b6eb09322e3L;

z = (z ^ (z >>> 32)) * 0xdaba0b6eb09322e3L;

z = (z ^ (z >>> 32));

// Update the LCG subgenerator

// The LCG is, in effect, "s = m * s + a" where m = ((1LL << 64) + ML)

final long u = ML * sl;

sh = (ML * sh) + unsignedMultiplyHigh(ML, sl) + sl + ah; // High half

sl = u + al; // Low half

if (Long.compareUnsigned(sl, u) < 0) ++sh; // Carry propagation

// Update the XBG subgenerator (xoshiro256 1.0)

long q0 = x0, q1 = x1, q2 = x2, q3 = x3;

long t = q1 << 17;

q2 ^= q0; q3 ^= q1; q1 ^= q2; q0 ^= q3; q2 ^= t;

q3 = Long.rotateLeft(q3, 45);

x0 = q0; x1 = q1; x2 = q2; x3 = q3;

// Return result

return z;

}

Fig. 2. Java code for the generate operation of an LXM generator with period 2128 (2256 − 1)

support interchangeable use of various prng algorithms within an application. The centerpiece
is a new interface RandomGenerator, which provides default implementations for many standard
methods such as nextFloat(), nextDouble(), nextGaussian(), ints(), and longs(), provided
only that any class that implements the interface must provide a method period (for reporting
the length of the state cycle) and either a nextLong() method (for generating a pseudorandomly
chosen 64-bit integer) or a nextInt() method (for generating a pseudorandomly chosen 32-bit
integer). Other new interfaces support the possibility that a specific prng algorithm may provide
a jump() method (for advancing a large distance along the state cycle) or a split() method (for
creating a new generator from an existing one, as described by Steele, Lea, and Flood [2014]).

3 LXM IMPLEMENTATION OF SPLITTING

The motivation for the split operation is that each distinct instance of a splittable prng, once
created, accesses only its own internal state. Instances of LXM do not communicate and do not
share any state; therefore no synchronization is required. Methods such as longs that can generate
streams of values in parallel rely on the standard Java spliteratormechanism [Oracle 2014]. The point
of a spliterator is that it can (try to) split itself into two substreams that may then be processed in

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

148:8 Guy L. Steele Jr. and Sebastiano Vigna

public SplittableGenerator split() {

return new L64X128MixRandom(this.nextLong(), this.nextLong(),

this.nextLong(), this.nextLong());

}

Fig. 3. Java code for the split operation of an LXM generator with period 264 (2128 − 1)

parallel. The spliterator for a stream that generates values from a splittable prng also automatically
splits the prng so that each substream will have its own prng instance rather than trying to share
the same one. It is this step that eliminates the need for any locking or other synchronization in
the parallel execution of stream expressions that use a splittable prng. This strategy is exactly that
already used for class SplittableRandom [Steele, Lea, and Flood 2014, ğ2.2]. Here we describe the
LXM implementation of the split method and the new splits method.

3.1 The Split Operation

Creating a new instance of an LXM algorithm from an existing one is done in a straightforward
way: the nextLong() or nextInt() method of the existing one is used to generate values for the
state variables of the LCG and XBG subgenerators and for the additive parameter of the LCG. See
Figure 3. The constructor then forces the additive parameter to be odd by setting its low-order
bit to 1, but beyond that no additional vetting of the additive parameter (to reject “weak valuesž
[Steele, Lea, and Flood 2014]) is necessary. In the unlikely circumstance that the state for the XBG
subgenerator is entirely 0, it is necessary to force it to be nonzero; this could be done by making
additional calls to nextLong() or nextInt(), but it is easier (and acceptable in practice, because it
happens so rarely) to derive the new XBG state from the new LCG state.

3.2 The Splits Operation

Existing JDK prng implementations, such as classes Random and SplittableRandom [Oracle Cor-
poration 2014a,b], provide methods such as ints(), longs(), and doubles() that produce streams
of pseudorandomly chosen values. JDK17 introduces a new method rngs() that produces a stream
of prng instances; one can then use the map method of the stream to execute a piece of code many
times, perhaps in parallel, each with its own prng instance so that there is no competition for
a shared resource (such as a single, shared prng). prng algorithms that have a jump() method
may also provide a jumps() method that is then automatically used to implement the rngs()

method by jumping along the state cycle multiple times. On the other hand, prng algorithms that
have a split() method may also provide a splits() method that is then automatically used to
implement the rngs() method by using the split() method multiple timesÐbut with a bit of
cleverness. The details of the technique are outside the scope of this paper, which focuses on how
values are generated, and why; but we touch on it briefly in Section 9.

4 NOTATION AND TERMINOLOGY

We use the standard lambda notation 𝜆𝑥 .𝑒 to denote a function that takes one argument and returns
the value produced by the expression 𝑒 with the parameter 𝑥 bound to the given argument. If the
argument is expected to be a tuple, we use a “nested destructuring parameter bindingž notation; for
example, if the argument is expected to be a 2-tuple containing a number and a 3-tuple, we could
use a notation such as 𝜆

(

𝑛, (𝑥,𝑦, 𝑧)
)

.𝑒 . In this paper we usually choose to use Greek letters such as
𝜎 and 𝜏 to name parameters.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:9

We work with vectors and matrices whose elements are taken from the two-element field F2

(also known as GF(2) and Z/2Z). We casually refer to the elements of such vectors and matrices as
bits, and we use both the symbol ⊕ and the name xor to refer to addition within this field. We refer
to elements and subvectors of a bit vector 𝑣 by using brackets with 0-origin indexing, for example
𝑣 [𝑖] or 𝑣 [𝑖 . . 𝑗]; “[𝑖 . . 𝑗]ž (where 𝑖 ≤ 𝑗) denotes subscripting by a range of integers 𝑖 to 𝑗 , inclusive.
Where necessary, we assume that any integer 𝑗 in the range [0 . . 2𝑤) (inclusive of 0, exclusive of 2𝑤)
may be implicitly treated as a bit vector 𝑣 of length𝑤 , and vice versa, by satisfying the relationship
𝑗 =

∑𝑤−1
𝑖=0 𝑣 [𝑖]2𝑖 (where 𝑣 [𝑖] is implicitly converted to an integer 0 or 1 before multiplying by 2𝑖).

Let 𝑆 and 𝑇 be finite sets of values; we will also refer to 𝑆 and 𝑇 as types, in the sense that the
value of a variable of type 𝑆 must be an element of 𝑆 , and similarly for 𝑇 .

For our purposes, a prng with states of type 𝑆 and outputs of type 𝑇 is a triple (𝑠0, 𝑓 , 𝑔) where
𝑠0 ∈ 𝑆 is the initial state, 𝑓 : 𝑆 → 𝑆 is a bijective function on states, and 𝑔 : 𝑆 → 𝑇 is a function
from states to outputs. Such a generator produces a sequence of states 𝑠0, 𝑠1, 𝑠2, . . . defined by the
recurrence 𝑠𝑖 = 𝑓 (𝑠𝑖−1) for all 𝑖 > 0; it also produces a sequence of outputs 𝑡0, 𝑡1, 𝑡2, . . . such that for
all 𝑖 ≥ 0, 𝑡𝑖 = 𝑔(𝑠𝑖). Thus for all 𝑖 ≥ 0, 𝑡𝑖 = 𝑔(𝑓 𝑖 (𝑠0)).
Because 𝑆 is finite, these sequences are periodic; because 𝑓 is bijective, the sequence does not

have a nonempty initial subsequence before commencing the periodic behavior. The period of the
generator is the smallest 𝑃 > 0 for which 𝑠𝑃 = 𝑠0; it follows that for all nonnegative integers 𝑖 and 𝑘 ,
𝑠𝑖+𝑘𝑃 = 𝑠𝑖 (and therefore 𝑡𝑖+𝑘𝑃 = 𝑡𝑖). We sometimes refer to the finite cyclic sequence 𝑠0, 𝑠1, . . . , 𝑠𝑃−1
as the state cycle of the generator; the length of this cycle is the period 𝑃 .

We use 𝑉 to refer to the bag (multiset) of outputs generated during one period of the generator,
that is, 𝑉 = * 𝑡𝑖 | 0 ≤ 𝑖 < 𝑃 +. We sometimes regard this multiset as a function 𝑉 : 𝑇 → N that
maps each element of 𝑇 to the number of times that value occurs in the multiset; in other words, it
is the number of times that that value appears within any length-𝑃 subsequence of the sequence of
outputs. The size of the multiset 𝑉 , written |𝑉 |, is defined to be

∑

𝑣∈𝑇 𝑉 (𝑣); it follows that |𝑉 | = 𝑃 .
Sometimes a prng with outputs of type𝑇 is regarded as a prng with outputs of type𝑇 𝑗 for some

𝑗 > 0Ðthat is, as generating tuples of length 𝑗 , where each element of the tuple is of type 𝑇 . If the
underlying prng of type 𝑇 is the triple (𝑠0, 𝑓 , 𝑔), then the alternate view may be described by the
derived triple

((

(𝑡0, 𝑡1, . . . , 𝑡 𝑗−1), 𝑠 𝑗−1
)

, 𝜆
(

(𝜏0, 𝜏1, . . . , 𝜏 𝑗−1), 𝜎 𝑗−1

)

.
(

(𝜏1, . . . , 𝜏 𝑗−1, 𝑔(𝑓 (𝜎 𝑗−1))), 𝑓 (𝜎 𝑗−1)
)

,

𝜆
(

(𝜏0, 𝜏1, . . . , 𝜏 𝑗−1), 𝜎 𝑗−1

)

.(𝜏0, 𝜏1, . . . , 𝜏 𝑗−1)
)

. In other words, the generated tuples are the (overlapping)
length- 𝑗 subsequences of the output sequence of the underlying prng. Note that the prng of tuples
has the same period as the underlying prng.
In some prior literature, a prng with outputs of type 𝑇 is described as “equidistributedž if the

multiset𝑉 of values generated during each period has the property that for any two values 𝑥 and 𝑦
of type 𝑇 , |𝑉 (𝑥) −𝑉 (𝑦) | ≤ 1; that is, the generated values are distributed “as equally as possiblež
over the values of type 𝑇 . More generally, a prng is described as “ 𝑗-dimensionally equidistributedž
if it is equidistributed when regarded as a generator of 𝑗-tuples as described above. Note that being
1-dimensionally equidistributed is the same as being equidistributed.

We introduce here a somewhat more detailed terminology: we say that a prng that generates

values of type 𝑇 is 𝛿-distributed if for any two values 𝑥 and 𝑦 of type 𝑇 , |𝑉 (𝑥) −𝑉 (𝑦) | ≤ 𝛿
⌈

|𝑉 |
|𝑇 |

⌉

.

(Omitting the ceiling brackets would make this definition slightly tighter, but including them allows
a more concise form for the 𝛿 values that is more convenient in practice for purposes of comparison.)
Since smaller values of 𝛿 are better, we will normally in each case cite the smallest possible value
of 𝛿 , and if 𝛿 = 0, we will say that the prng is exactly equidistributed. More generally, we will say a
prng is 𝑗-dimensionally 𝛿-distributed if it is 𝛿-distributed when regarded as a generator of 𝑗-tuples;
but if 𝛿 = 0, we will say that the prng is exactly 𝑗-dimensionally equidistributed.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

148:10 Guy L. Steele Jr. and Sebastiano Vigna

5 THEORETICAL CONSTRUCTION OF THE LXM ALGORITHM

We define an LCG with state size 𝑘 such that 𝑘 ≥ 3, multiplier𝑚 such that (𝑚 mod 8) = 5, additive
parameter 𝑎 such that 1 ≤ 𝑎 < 2𝑘 and 𝑎 is odd, initial state 𝑠0 such that 0 ≤ 𝑠0 < 2𝑘 , and output
size𝑤 such that 0 ≤ 𝑤 ≤ 𝑘 , as the triple 𝐿 =

(

𝑠0, 𝜆𝜎.(𝑚𝜎 + 𝑎) mod 2𝑘 , 𝜆𝜎.
⌊

𝜎/2𝑘−𝑤
⌋)

, and we write
𝑡0, 𝑡1, 𝑡2, . . . to refer to its outputs.

We define an XBG with state size 𝑛, 𝑛-by-𝑛 bit matrix 𝑈 , initial state 𝑥0 where 𝑥0 is an 𝑛-bit
vector, and output size𝑤 such that 0 ≤ 𝑤 ≤ 𝑛 as the triple 𝑋 = (𝑥0, 𝜆𝜏 .𝑈𝜏, 𝜆𝜏 .𝜏 [0 . .𝑤 − 1]), and we
write 𝑦0, 𝑦1, 𝑦2, . . . to refer to its outputs, where 𝜏 [0 . .𝑤 − 1] produces a𝑤-bit vector containing
the first𝑤 bits of 𝜏 . (We use the first𝑤 bits of 𝜏 without loss of generality, because one can create
an equivalent XBG that delivers any desired size-𝑤 subset of the state bits, in any order, by using
some single fixed permutation to reorder the bits of the initial state and also to reorder both the
rows and columns of the matrix𝑈 .)

Given such an LCG and XBG, a binary combining operation on𝑤-bit values � (which is typically
either + or ⊕), and a bijective mixing function 𝜇 on𝑤-bit values, an LXM generator is the triple
𝐺 =

(

(𝑠0, 𝑥0), 𝜆(𝜎, 𝜏).((𝑚𝜎 + 𝑎) mod 2𝑘 ,𝑈𝜏), 𝜆(𝜎, 𝜏) .𝜇 (
⌊

𝜎/2𝑘−𝑤
⌋

� 𝜏 [0 . .𝑤 − 1])
)

. It is easy to see
that the set of possible states of the LXM is the cross product of the sets of states of the LCM and
XBG; that the state-update function for the LXM simply pairs an update of the LCG with an update
of the XBG; and that the output function combines an output of the LCG with a corresponding
output of the XBG and then applies the mixing function.

The reader may wonder, given that the state update function of the LCG uses an affine transfor-
mation𝑚𝜎 + 𝑎, why the state update function of the XBG does not more generally use an affine
transformation 𝑈𝜏 ⊕ 𝑣 . The answer has more to do with engineering than theory; we address it
below in Sections 6.5.2 and 6.5.3.

6 PROPERTIES OF THE LXM ALGORITHM

In this sectionwe discuss some properties of the LXM algorithm and how they derive from properties
of its components. First we provide brief answers to some obvious questions; the subsections that
follow elaborate on these answers.

Why use two subgenerators? The usual reasons: each is fairly small and fast, and they are chosen
so that the period of the LXM generator will be the product of their individual periods.
Why use an XBG for one subgenerator? XGBs are fast; they are already widely used to produce

pseudorandom sequences of fairly good quality; they have a well-understood theory, including for
which 𝑘 they are 𝑘-dimensionally equidistributed; and it is easy to scale their state size.

Why use an LCG? An LCG whose period is a power of 2 provides exact equidistribution, and
preserves any 𝑘-dimensional equidistribution contributed by the XBG. An LCG is fairly fast, and
uses hardware resources (multiply and add) that may be different from those needed by the XBG.
The LCG provides an easy way to provide an additive parameter. Finally, mixing two generators
based on different algebraic operations may improve the quality of a prng.

Why have an additive parameter? Additive parameters are an alternative to using jump functions
to ensure non-overlap of multiple sequences, but are faster, easier to use, and easier to code.

Why use a nonlinear mixing function? The graph of every LCG with the same multiplier𝑚 has the
same shape, even if they have different additive parameters. A similar remark is true of a generalized
form of XBG. Changing the parameter just shifts (and perhaps flips) the graph. Therefore the graph
of the combined LCG/XBG part of LXM also always has the same shape (more precisely, one of two
shapes). A good mixing function reacts nonlinearly to the additive parameter (as well as to more
subtle linear correlations within the subgenerators). Testing confirms that a good mixing function
appears to make different streams relatively uncorrelated, but we don’t have a theoretical proof.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:11

6.1 Period

A well-known fact about LCGs of period 2𝑘 is that for all 0 ≤ 𝑗 < 𝑘 , the sequence of bits consisting
of successive values of bit 𝑗 of the overall state (where the least significant bit is bit 0 and the most
significant bit is bit 𝑘 −1) has period 2𝑗+1. Therefore the most significant bit has period 2𝑘 . It follows
trivially that the sequence of 𝑤-bit values consisting of successive values of bits 𝑘 − 1 through
𝑘 −𝑤 of the overall state has period 2𝑘 .

The XBG subgenerator of an LXM algorithm is always chosen so that the sequence of 𝑤-bit
values consisting of successive values of a specific set of𝑤 bits within the 𝑛 bits of state has an odd
period 𝑃 . Because any odd number is relatively prime to any power of 2, the overall period of an
LXM generator will be 2𝑘𝑃 . Note that the various xoroshiro and xoshiro algorithms each have
the maximum possible period, 2𝑛 − 1, so an LXM algorithm that uses one of these generators as its
XBG subgenerator will have period 2𝑘 (2𝑚 − 1).

6.2 Scalability of Period

The parameters 𝑘 (size of LCG state) and 𝑛 (size of XBG state) may be varied independently.
When 𝑘 is made very large, the cost of the multiplication operation grows quadratically (there are
subquadratic multiplication algorithms, but they are not cost-effective for values of 𝑘 within the
range of currently practical interest), so if a larger period is desired, it may be preferable to increase
𝑛 rather than 𝑘 . Fortunately the xoroshiro family of XBG generators easily grows to support state
sizes 2𝑤 , 4𝑤 , 8𝑤 , 16𝑤 , and beyond without a significant increase in computational cost per value
generated (though for the specific sizes 4𝑤 and 8𝑤 , the xoshiro algorithm may be preferable). For
𝑤 = 64 (the sweet spot for many of today’s microprocessors), practical choices for 𝑘 are 64 or 128
and for 𝑛 include 128, 256, 512, and 1024, supporting periods ranging from 2192 − 264 to 21152 − 2128.
For𝑤 = 32 (a sweet spot for smaller processors used in embedded applications), 𝑘 = 32 and𝑤 = 64

may be a good choice (period 296 − 232).

6.3 Probability of Overlapping Sequences

Given a prng algorithm with a single state cycle of period 𝑃 , suppose that we choose two distinct
positions on the cycle literally uniformly at random, and then for each one consider the sequence of
length ℓ consisting of the state at that position and the ℓ−1 states following it.What is the probability
that the two sequences will overlap?We care about this because long overlapping subsequences will
produce highly correlated (indeed, identical) outputs that would not be characteristic of sequences
of values chosen truly at random.

By symmetry, without loss of generality we may assign the first chosen position 𝑞1 the index ℓ ,
and then choose the second position 𝑞2 uniformly at random from the range of integers [0 . . 𝑃 − 1].
Overlap occurs if and only if 1 ≤ 𝑞2 ≤ 2ℓ − 1. The number of choices that allow overlap is 2ℓ − 1,
so the probability of overlap is (2ℓ − 1)/𝑃 .

Now suppose instead of one big state cycle of period 𝑃 , we have 𝐴 distinct state cycles of period
𝑃/𝐴, and we do the following process twice: first choose a state cycle uniformly at random, then
choose a position on that state cycle uniformly at random, then consider a state sequence of length
ℓ starting at that position. The two sequences can overlap only if they lie on the same state cycle
(probability 1/𝐴); if they do, the probability of overlap is (2ℓ − 1)/(𝑃/𝐴) as before, so the overall
probability is (2ℓ − 1)/𝐴(𝑃/𝐴) = (2ℓ − 1)/𝑃 . Thus this intuition: breaking the big state cycle up
into equal-sized pieces does not affect the probability of overlap.
In LXM, the effect of having an additive parameter in the LCG is to select one of a number

(typically 2𝑤−1 or 2𝑘−1) of state cycles (though, as we discuss below in Section 6.5.1, these state
cycles are not terribly different), each of period 2𝑘 (2𝑛 − 1). The point we wish to make here is

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

148:12 Guy L. Steele Jr. and Sebastiano Vigna

that bits in the additive parameter are just as effective as bits in the LCG state or the XBG state in
reducing the probability of overlap, except for the fact that the lowest bit of an additive parameter
is “wastedž because it must be 1. As an example, let’s compare an LXM algorithm 𝐿1with 𝑘 = 64 and
𝑛 = 128 with a modified LXM algorithm 𝐿2 with 𝑘 = 128 and 𝑛 = 128 but the additive parameter is 1
in every instance. Each instance of 𝐿1 has 64 bits of LCG state, a 64-bit additive parameter, and 128
bits of XBG state. Each instance of 𝐿2 has 128 bits of LCG state and 128 bits of XBG state, and it needs
no per-instance storage for the constant additive parameter. So the per-instance storage for each of
𝐿1 and 𝐿2 is 256 bits. For 𝐿2, the probability of overlap is (2ℓ −1)/(2

128 (2128−1)) ≈ (2ℓ −1)/2256; for
𝐿1, the probability of overlap is (2ℓ − 1)/(2

63264 (2128 − 1)) ≈ (2ℓ − 1)/2255, which is the same except
for that one wasted bit. If we let ℓ = 250 and create 232 instances of 𝐿1, initializing their states and
additive parameters truly at random, then the chances that two of them will have the same additive
parameter are fairly high, thanks to the Birthday Paradox (choosing 230 values with replacement
from a set of 263 items), but the probability of any pair of instances overlapping is roughly 2−172,
and the probability that some pair out of the 232 instances will overlap is roughly 2−140 (because
232 is quite small compared to 2172, the effect of the Birthday Paradox can be neglected).
It follows that, under the crucial assumption that initializing the state of newly created instances

using the output of a prng is sufficiently close to truly random for this purpose, we can be confident
that instances produced by the split() operation described in Section 3.1 are highly likely to avoid
unwanted correlation due to accidental sequence overlap, and we can increase our confidence either
by increasing the size of the XBG state, increasing the size of the LCG state, and/or increasing the
number of bits in the additive parameter (remembering that this last size cannot usefully exceed
the size of the LCG state).

6.4 Equidistribution

A 𝑘-bit LCG of period 2𝑘 produces each possible 𝑘-bit value exactly once during each cycle, so it is
exactly equidistributed. The high-order𝑤 bits of the output are likewise exactly equidistributed;
each of the 2𝑤 distinct values is produced 2𝑘−𝑤 times during the cycle.
An 𝑛-bit XBG of period 2𝑛 − 1 produces each 𝑤-bit value 2𝑛−𝑤 times, except that there is one

value, typically 0, that is produced only 2𝑛−𝑤 − 1 times. Such a generator is 2−(𝑛−𝑤) -distributed. For
example, for𝑤 = 64, the xoroshiro128 algorithm (𝑛 = 128) is 2−64-distributed, and the xoshiro256
algorithm (𝑛 = 256) is 2−192-distributed.
An LXM algorithm that combines two such subgenerators is exactly equidistributed, because

each position in the period of the LCG “meetsž (and is therefore combined with) each position in
the period of the XBG exactly once during the period of the LXM generator, so for every position
in the XBG cycle, the𝑤-bit value in that position has added to it every possible𝑤-bit value exactly
2𝑘−𝑤 times. (Applying a bijective mixing function leaves equidistribution qualities unaffected.)

If the 𝑛-bit XBG of period 2𝑛 − 1 is (𝑛/𝑤)-dimensionally equidistributedÐthat is, using groups of
𝑛/𝑤 successive outputs to form (𝑛/𝑤)-tuples results in generating every possible tuple except one
(call it 𝑍 , because it is typically the all-0 tuple), exactly onceÐthen an LXM generator for which
𝑘 = 𝑤 is also (𝑛/𝑤)-dimensionally equidistributed; precisely put, every possible (𝑛/𝑤)-tuple of
values is generated 2𝑘 times, except that if 𝐷 is any (𝑛/𝑤)-tuple that can be generated by the LCG
itself, then 𝐷 + 𝑍 is generated by the LXM generator only 2𝑘 − 1 times. (This conclusion relies on
the fact that 𝑘 = 𝑤 guarantees that no two of the 2𝑘 (𝑛/𝑤)-tuples generated by the LCG are equal,
whereas this is generally not true when 𝑘 > 𝑤 .)

For example, xoroshiro128 is 2-dimensionally equidistributed [Blackman and Vigna 2018]; using
the terminology we define in Section 4, we can observe that xoroshiro128 is 2-dimensionally
1-distributed, and it follows that LXM using a 64-bit LCG and xoroshiro128 is 2-dimensionally

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:13

2−64-distributed; so both xoroshiro128 and the LXM based on it can be said to be 2-dimensionally
equidistributed, but the LXM has a much better 𝛿 value, reflecting the fact that it really can generate
all possible 2-tuples, though a few of them are generated very slightly less often than the others,
whereas for xoroshiro128 by itself there is one 2-tuple that is never generated.

Similarly, we can observe that because xoshiro256 is 4-dimensionally equidistributed (more pre-
cisely, 4-dimensionally 1-distributed), an LXMusing a 64-bit LCG and xoshiro256 is 4-dimensionally
2−64-distributed. Likewise, LXM using a 64-bit LCG and xoshiro512 is 8-dimensionally 2−64-
distributed, and LXM using a 64-bit LCG and xoroshiro1024 is 16-dimensionally 2−64-distributed.
To summarize, the LXM algorithm can improve the equidistribution properties of its XBG

component in two ways: (1) by making the sequence of𝑤-bit outputs exactly equidistributed rather
than approximately; and (2) when 𝑘 = 𝑤 and the XBG is 𝑗-dimensionally 𝛿-distributed for some
𝑗 > 1, by reducing 𝛿 by a factor of 2𝑤 .
(We also note that for an application that makes heavy use of, say, 2-tuples of 64-bit values, one

could use a modified version of LXM for which 𝑤 = 128 and 𝑘 = 128 for the LCG, but 𝑤 = 64
and 𝑛 ≥ 128 for the XBG, where for every generated 2-tuple of 64-bit values the LCG is advanced
once and the XBG is advanced twice. The overall generator would then be exactly 2-dimensionally
equidistributed. However, we have not yet studied or tested such a generator in any depth.)

6.5 Why We Need a Nontrivial Mixing Function

6.5.1 The Shape of LCG Graphs. Durst [1989] observed that, in some sense, every LCG on𝑤-bit
words whose period is 2𝑤 that uses the same multiplier𝑚 produces “the same sequencež; if we
imagine a two-dimensional plot of points (𝑖, 𝑦𝑖), then changing the additive constant 𝑎 has the
effect of shifting the graph horizontally and vertically and possibly also flipping it top-to-bottom,
but the overall “shapež of the graph is unchanged. (Coveyou had earlier remarked that the choice
of addend for an LCG is “not of great importancež [Coveyou 1969, ğ12.1].)

To see this, choose any specific𝑚, 𝑎, and 𝑎′ such that (𝑚 mod 8) = 5, and 𝑎 and 𝑎′ are odd, and
consider two LCGs 𝐿 = (𝑠0, 𝜆𝜎.(𝑚𝜎 + 𝑎) mod 2𝑤, 𝜆𝜎.𝜎) and 𝐿′ = (𝑠 ′0, 𝜆𝜎.(𝑚𝜎 + 𝑎′) mod 2𝑤, 𝜆𝜎.𝜎).

There are then two cases.
(i) If (𝑎 − 𝑎′) mod 4 = 0, let 𝑟 be a solution to the congruence 𝑎′ ≡ 𝑎 − (𝑚 − 1)𝑟 (mod 2𝑤); it is

unique because𝑚 − 1 and 𝑎 − 𝑎′ are multiples of 4, so we can rewrite it as 𝑚−1
4 𝑟 ≡ 𝑎−𝑎′

4 (mod 2𝑤);

then, because𝑚 − 1 is an odd multiple of 4, 𝑚−14 has a multiplicative inverse modulo 2𝑤 , therefore

𝑟 =
(

𝑚−1
4

)−1 𝑎−𝑎′

4 mod 2𝑤 . Let 𝑖 be the smallest nonnegative integer such that 𝑠 ′𝑖 = (𝑠0 + 𝑟) mod 2𝑤 .
Now an inductive argument: assume that 𝑠 ′𝑖+𝑗 = (𝑠 𝑗 + 𝑟) mod 2𝑤 ; then

𝑠 ′𝑖+𝑗+1 = (𝑚𝑠 ′𝑖+𝑗 + 𝑎
′) mod 2𝑤

= (𝑚(𝑠 𝑗 + 𝑟) + 𝑎 − (𝑚 − 1)𝑟) mod 2𝑤

= (𝑚𝑠 𝑗 +𝑚𝑟 + 𝑎 −𝑚𝑟 + 𝑟) mod 2𝑤

= (𝑚𝑠 𝑗 + 𝑎 + 𝑟) mod 2𝑤

= (𝑠 𝑗+1 + 𝑟) mod 2𝑤

and we can conclude that 𝑠 ′𝑖+𝑗 = (𝑠 𝑗 + 𝑟) mod 2𝑤 is true for all 𝑗 ≥ 0. In words, the graph of 𝐿′ is

the result of shifting the graph of 𝐿 rightward by 𝑖 and upward by 𝑟 , where the upward shift is
actually a rotation modulo 2𝑤 .
(ii) If (𝑎 − 𝑎′) mod 4 = 2, let 𝑟 be a solution to the congruence 𝑎′ ≡ (−𝑎) + (𝑚 − 1)𝑟 (mod 2𝑤);

it is unique because both𝑚 − 1 and 𝑎 + 𝑎′ are multiples of 4, so we can rewrite it as 𝑚−1
4 𝑟 ≡ 𝑎+𝑎′

4

(mod 2𝑤); therefore 𝑟 =
(

𝑚−1
4

)−1 𝑎+𝑎′

4 mod 2𝑤 . Let 𝑖 be the smallest nonnegative integer such that
𝑠 ′𝑖 = −(𝑠0 + 𝑟) mod 2𝑤 . Now an inductive argument: assume that 𝑠 ′𝑖+𝑗 = −(𝑠 𝑗 + 𝑟) mod 2𝑤 ; then

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

148:14 Guy L. Steele Jr. and Sebastiano Vigna

𝑠 ′𝑖+𝑗+1 = (𝑚𝑠 ′𝑖+𝑗 + 𝑎
′) mod 2𝑤

= (𝑚(−(𝑠 𝑗 + 𝑟)) + (−𝑎) + (𝑚 − 1)𝑟) mod 2𝑤

= (−𝑚𝑠 𝑗 −𝑚𝑟 − 𝑎 +𝑚𝑟 − 𝑟) mod 2𝑤

= (−𝑚𝑠 𝑗 − 𝑎 − 𝑟) mod 2𝑤

= −(𝑠 𝑗+1 + 𝑟) mod 2𝑤

and we can conclude that 𝑠 ′𝑖+𝑗 = −(𝑠 𝑗 + 𝑟) mod 2𝑤 is true for all 𝑗 ≥ 0. In words, the graph of 𝐿′ is

the result of shifting the graph of 𝐿 rightward by 𝑖 and downward by 𝑟 (rotating modulo 2𝑤), then
flipping the graph vertically by negation of the 𝑦-axis (again modulo 2𝑤).
Because the output function selects the high-order bits of the LCG state, the effect is to shrink

the graph vertically (dividing by 2𝑘−𝑤) and then to apply a floor function; thus if 𝑘 > 𝑤 , the shape
still remains roughly the same, though there is some jitter. Choosing different additive parameters
for an LCG is not, of itself, a good way to produce streams that will appear to be independent.

6.5.2 The Shape of XBG Graphs. A similar (and simpler) argument shows that every full-period
XBG that uses the same matrix𝑈 produces “the same sequencež; to see this, choose an 𝑛-by-𝑛 bit
matrix 𝑈 whose characteristic polynomial is primitive (therefore 𝑈 is invertible), and also choose
two 𝑛-bit vectors 𝑣 and 𝑣 ′; then consider the two XBGs 𝑋 = (𝑥0, 𝜆𝜏 .(𝑈𝜏 ⊕ 𝑣), 𝜆𝜏 .𝜏 [0 . .𝑤 − 1]) and
𝑋 ′ = (𝑥 ′0, 𝜆𝜏 .(𝑈𝜏 ⊕ 𝑣

′), 𝜆𝜏 .𝜏 [0 . .𝑤 − 1]). By the CayleyśHamilton theorem and primitivity of the
characteristic polynomial, any polynomial in𝑈 of degree 𝑛− 1 or less can be expressed as a positive
power of𝑈 [Engelberg 2015, ğ9.7]; it follows that because𝑈 is invertible,𝑈 ⊕ 𝐼 is invertible.

Now consider the equation 𝑣 ′ = 𝑣 ⊕ (𝑈 ⊕ 𝐼)𝑟 ; because (𝑈 ⊕ 𝐼) is invertible, we can easily solve
the equation to get the unique solution 𝑟 = (𝑈 ⊕ 𝐼)−1 (𝑣 ⊕ 𝑣 ′). Let 𝑖 be the smallest nonnegative
integer such that 𝑥 ′𝑖 = 𝑥0 ⊕ 𝑟 . Now an inductive argument: assume that 𝑥 ′𝑖+𝑗 = 𝑥 𝑗 ⊕ 𝑟 ; then

𝑥 ′𝑖+𝑗+1 = 𝑈𝑥 ′𝑖+𝑗 ⊕ 𝑣
′

= 𝑈 (𝑥 𝑗 ⊕ 𝑟) ⊕ 𝑣 ⊕ (𝑈 ⊕ 𝐼)𝑟

= 𝑈𝑥 𝑗 ⊕ 𝑈𝑟 ⊕ 𝑣 ⊕ 𝑈𝑟 ⊕ 𝑟

= 𝑈𝑥 𝑗 ⊕ 𝑣 ⊕ 𝑟

= 𝑥 𝑗+1 ⊕ 𝑟

and we can conclude that 𝑥 ′𝑖+𝑗 = 𝑥 𝑗 ⊕ 𝑟 is true for all 𝑗 ≥ 0. In words, the graph of 𝑋 ′ is the result

of shifting the graph of 𝑋 rightward by 𝑖 and “xor-flippingž the vertical axis by 𝑟 .
Thus an XBG with state update function 𝜆𝜏 .(𝑈𝜏 ⊕ 𝑣) and output function 𝜆𝜏 .𝜏 [0 . .𝑤 − 1]

is effectively equivalent to an XBG with state update function 𝜆𝜏 .(𝑈𝜏) and output function
(𝜆𝜏 .(𝜏 [0 . .𝑤 − 1] ⊕ 𝑣), where 𝑣 = (((𝑈 ⊕ 𝐼)−1)𝑣) [0 . .𝑤 − 1] = (((𝑈 ⊕ 𝐼)−1) [0 . .𝑤 − 1; 0 . . 𝑛 − 1])𝑣 .
The graphs of all XBGs that use matrix𝑈 have “the same shapež but “xor-shiftedž by a constant.

An xor with a constant affects the bits of the XBG state independently, and the output function
selects high-order bits of the XBG state without regard to the value of any state bit; therefore
graphs of the output values will also have “the same shape.ž Choosing different additive parameters
for an XBG is not, of itself, a good way to produce streams that will appear to be independent.

6.5.3 The Purpose of the Additive Parameter. In the LXM algorithm, the real purpose of the additive
parameter in the LCG is not to select one of many LCG streams in hopes that these many streams
will appear to be independent, because they cannot. Similarly, an additive parameter in an XBG
will not select one of many independent streams. What we have seen is that, in effect, one might as
well use a fixed LCG and a fixed XBG, combine their outputs, then add (or xor) a parameter, then
apply the mixing function.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:15

Then why does the parameter appear in the LCG rather than later in the algorithm? It is purely
an engineering tweak, a bit of optimization. From a theoretical point of view, we can equally well
introduce a parameter in any of three places: in the LCG, or in the XBG (by using an F2-affine
state update function 𝜆𝜏 .𝑈𝜏 ⊕ 𝑣 rather than the purely F2-linear state update function 𝜆𝜏 .𝑈𝜏), or
by using a combining function such as 𝜆(𝑝, 𝑞).𝑝 + 𝑞 + 𝑎. (We could even introduce parameters
in two, or all three, of those places, but there seems to be little extra benefit.) We observe that
introducing the parameter in the XBG or the combining function requires “extra workžÐperhaps
one additional instructionÐon today’s typical hardware architectures, but the LCG needs to add
some odd value in order to have full period, and it’s easy to make that odd value be a parameter
rather than a constant. Moreover, in the style of coding where the LCG update and XBG update are
potentially computed in parallel with the combining and mixing functions, and given that a good
mixing function takes longer to compute than the LCG update, adding the parameter in the LCG
rather than in the combining step moves that addition operation off the critical path.

The hope, then, is that the additive parameter, despite being implemented at part of the LCG, will,
in effect, select one of many mixing operations. In order to achieve this result, the mixing function
certainly needs to be nonlinear, and ideally its range will appear to be a random permutation of its
domain. Beyond this point theory offers us little firm guidance, and so we turn to empirical testing.

7 TESTING

We consider the TestU01 BigCrush test suite [L’Ecuyer and Simard 2007; Simard 2009] to be the
current gold standard for final testing of any prng algorithm before deployment. However, we
found PractRand [Doty-Humphrey 2011ś2021] to be an extremely useful additional tool for two
purposes: experimental exploration (because it fails fast on poor prng algorithms) and evaluating
relative degrees of weakness (because the length to which a tested sequence must grow before
failure is reported appears to be a more sensitive and repeatable metric than the 𝑝-value calculated
for a sequence of fixed length). An algorithm that passes PractRand at the 4 TB threshold is worthy
of final testing with BigCrush.
In testing variations of the LXM algorithm, we have performed over 52,000 complete runs of

PractRand and over 50,000 complete runs of TestU01 BigCrush. For reasons of space we cannot
present all the results of these tests, but we do present and describe tables that summarize salient
results from BigCrush, and we describe and summarize in prose form salient results from PractRand.

7.1 Test Framework

We built a small testing framework to control thousands of test runs of multiple prng algorithms,
using both the BigCrush test suite and the PractRand test suite.

Nearly all the tests were performed on a cluster of 16 nodes, each with two sockets, each with an
E5-2660 2.2GHz Intel Xeon processor (each having eight cores collectively supporting 16 threads).
Therefore 512 threads can execute simultaneously. (A very small fraction of the tests were run on a
Macintosh Pro with two 2.8 GHz quad-core Xeon processors. This was done to validate the testing
software before reserving time on the big cluster. The results of these initial runs constituted valid
measurements and were retained.)
We made no attempt to parallelize the PractRand and BigCrush test suites; instead, we used

make files to generate thousands of jobs at a time. Each make file describes one batch of test runs.
Each make file includes code to find out which of the compute nodes it is being run on, so that a
different subset of the batch of test runs will be run on each node. The use of make files allowed a
very simple form of crash recovery: simply a matter of re-issuing the make command.

Each individual run tested the behavior of one prng algorithm, starting it from one specific state
and testing the statistical quality of its output stream. While BigCrush and PractRand differ in the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

148:16 Guy L. Steele Jr. and Sebastiano Vigna

kinds of statistical tests they employ and the way they report the results of their analysis, they are
alike in four key ways:

• There is a simple way to code new prng algorithms in C (or C++) and link them into the test
suite. (This avoids the I/O overhead for piping the prng output stream into the test suite.)
• Results are reported by printing text to “standard outputž; each report includes statistical
information and also an indication of the total amount of CPU time (user execution time)
consumed by the test.
• Each has a command-line interface that allows specification of which prng algorithm to test.
• The command-line interface does not allow a complete specification of the initial state of
the prng, but does allow specification of a 64-bit seed from which the initial state can be
constructed, and the construction code can be user-specified and bundled with the code for
the prng algorithm itself.

We designed a detailed encoding that would allow us to use the single 64-bit integer parameter in
the command line to specify a wide variety of initial states.

7.1.1 Distilling BigCrush Reports. The BigCrush test suite runs 106 individual tests [L’Ecuyer
and Simard 2013, function bbattery_BigCrush, pp. 148ś152], computing 160 test statistics and
𝑝-values [L’Ecuyer and Simard 2007]. A single test run typically prints about 110 kilobytes of
information; at the end is either the message “All tests were passedž or a list of anomalies, that
is, tests whose 𝑝-values were outside the range [0.001 . . 0.999].
For every algorithm tested with TestU01, we ran the entire suite three times, once in each of

three distinct modes, identified by the letters f, g, and u. The f mode generates double values by
generating a 64-bit integer, then right-shifting it by 11 and dividing by 253 to produce a value in the
range [0.0 . . 1.0). The g mode generates double values by generating a 64-bit integer, reversing
the order of its bits so that bit 𝑗 becomes bit 63 − 𝑗 , then right-shifting it by 11 and dividing by 253.
The u mode generates double values by generating a 64-bit integer, then dividing each half (first
the low half, then the high half) by 232 to produce two double values, one after the other. (Late in
our testing process we added a fourth mode, w, which generates double values by generating a
64-bit integer, then reversing the bit order of each half and dividing by 232.) As it turned out, we
observed in the measured results no obvious differences between testing modes.
The distillation software for BigCrush test runs distills the list of anomalies for each test run

into a pair of integers (𝑙, 𝑐) (a warning level and a count) in this manner: If a test run file is missing,
then (𝑙, 𝑐) = (−1, 0). If a test run file is present but is incomplete or malformed, then (𝑙, 𝑐) = (−2, 0)
(this can happen if a test run was terminated before completion). If a test run file is present and all
tests were passed (10−3 < 𝑝 < 1 − 10−3), then (𝑙, 𝑐) = (0, 0). Otherwise, the test run file was present
and well-formed but reported one or more anomalies. Each anomaly is categorized according to its
reported 𝑝-value (or, if 𝑝 > 0.5, by using 1 − 𝑝) into one of seven warning levels: if 𝑝 is eps then 7,
else if 𝑝 is eps1 then 6, else if 𝑝 ≤ 10−12 then 5, else if 𝑝 ≤ 10−9 then 4, else if 𝑝 ≤ 10−6 then 3, else
if 𝑝 ≤ 10−4 then 2, else if 𝑝 ≤ 10−3 then 1; then 𝑙 is the highest warning level among all anomalies
for the test run, and 𝑐 is the number of anomalies having that highest warning level. We regard a
run as a complete failure if 𝑙 is 6 or 7.

7.1.2 Distilling PractRand Reports. The PractRand test suite is oriented toward testing 64-bit integer
values and includes tests specifically designed to probe weakness in the low-order bits, so we used
PractRand directly on the generated 64-bit values and made no attempt to define multiple testing
modes. We ran each test until it had either reported failure or generated 4 TB of test data.

A single test run that gets all the way to 4 terabytes typically prints about 5 kilobytes of informa-
tion. For each anomaly reported, PractRand prints not only a 𝑝-value but also a word or phrase

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:17

Table 1. Some of the łmagic constantsž used in testing. Multiplier values𝑚 are presented in decimal form and
are among those recommended by L’Ecuyer [1999b, Table 4, p. 258]; all others are presented in hexadecimal
form and are random values originally obtained from HotBits [Walker 1996], with 𝐴 values forced to be odd.

32 bits

𝑚2 = 2891336453 𝐴8 = 0x4E1FD53B 𝑆8 = 0x4C3CA493

𝑚4 = 29943829 𝐴10 = 0x950F5BFF 𝑆10 = 0x734B1FEF

𝑚6 = 32310901 𝐴12 = 0xFB999853 𝑆12 = 0x36BAE016

64 bits

𝑚2 = 2862933555777941757 𝐴8 = 0x856FA2A9BC6917B7 𝑆8 = 0xCFEADA5EE4037657

𝑚4 = 3202034522624059733 𝐴10 = 0x873C0F33448D2C35 𝑆10 = 0x0D1729016D5CA71D

𝑚6 = 3935559000370003845 𝐴12 = 0xD321702ECD7BDA75 𝑆12 = 0xAF5AA696D8C097F6

describing that 𝑝-value; in increasing order of severity, they are unusual, suspicious, SUSPICIOUS,
very suspicious, VERY SUSPICIOUS, and FAIL. (PractRand may further print a varying number of
exclamation points after the word “FAILž but we chose to ignore those: failure is failure.) We relied
on these nonnumerical descriptions in distilling the reports into a pair of integers (𝑙, 𝑐) (a warning
level, ranging from 1 for unusual to 6 for FAIL, and a count) in a manner similar to that used for
BigCrush. In addition, for each warning, the amount of data processed is recorded.

7.2 Results of BigCrush Tests

Table 1 lists some constants that are referred to by name in later tables. Not shown for lack of space
are similar constants 𝑋8, 𝑋10, and 𝑋12; also not shown are similar 16-bit and 128-bit constants.

Table 2 and other tables after it present summarized BigCrush results; the LATEX source for these
tables was generated automatically by the distillation software described in Section 7.1. Each line
of the table summarizes a set of tests that differ only in stream count (the number of instances
whose outputs are used in round-robin fashion) and mode. The first line of the table’s footer shows
the total number of test runs and the total CPU-thread time expended; the second line shows the
set of stream counts and set of modes used for every line in the table.

For each line in the table, the first three columns show𝑤 , 𝑘 , and 𝑛. The next two columns name
the mixing function and initialization strategy. The next five columns give𝑚, 𝑎, 𝑠0, 𝑥0, and the
combining function (+ or ⊕); if a value is underlined, then every instance uses the indicated value;
otherwise each instance uses a value generated by some other instance in a manner dictated by the
particular initialization strategy. 𝑁 is the total number of test runs for that line of the table. The
next eight columns show the number of test runs whose highest warning level was 0, 1, 2, . . . , 7;
recall that warning levels 6 and 7 indicate complete failure (see Section 7.1.1). The last two columns
give the total number of warnings (Σ) and the smallest 𝑝-value (𝑃worst) seen during the 𝑁 runs.

Figure 4 shows C code for mixing functions we tested: murmur32 and murmur64 [Appleby 2011];
degski32 and degski64 [degski 2018]; lea64, by Doug Lea [Lea 2013]; starstar16 [Blackman
and Vigna 2018] (a scrambler, never intended to be a mixing function); and madeup16, by one of us.
These are the five initialization strategies that appear in the tables (let 𝜅 be the stream count,

and it is implicitly understood that as the non-underlined values for an instance are filled in, the
underlined values are also filled in as specified in the table):

same uses the listed𝑚, 𝑧, 𝑠0, and 𝑥0 values to create a single extra instance of the LXM, outputs
of which are used to initialize non-underlined values for the 𝜅 instances to be tested.

tree 𝑏 uses𝑚, 𝑧, 𝑠0, and 𝑥0 to initialize instance 0, then for all 1 ≤ 𝑗 < 𝜅 in ascending order,
output from instance ⌊ 𝑗/𝑏⌋ is used to initialize non-underlined values for instance 𝑗 .

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

148:18 Guy L. Steele Jr. and Sebastiano Vigna

uint32_t murmur32(uint32_t z) {

z ^= (z >> 16);

z *= 0x85ebca6bul;

z ^= (z >> 13);

z *= 0xc2b2ae35ul;

return z ^ (z >> 16); }

uint64_t murmur64(uint64_t z) {

z ^= (z >> 33);

z *= 0xff51afd7ed558ccdull;

z ^= (z >> 33);

z *= 0xc4ceb9fe1a85ec53ull;

return z ^ (z >> 33); }

uint32_t degski32(uint32_t z) {

z ^= (z >> 16);

z *= 0x45d9f3bul;

z ^= (z >> 16);

z *= 0x45d9f3bul;

return z ^ (z >> 16); }

uint64_t degski64(uint64_t z) {

z ^= (z >> 32);

z *= 0xd6e8feb86659fd93ull;

z ^= (z >> 32);

z *= 0xd6e8feb86659fd93ull;

return z ^ (z >> 32); }

uint64_t lea64(uint64_t z) {

z ^= (z >> 32);

z *= 0xdaba0b6eb09322e3ull;

z ^= (z >> 32);

z *= 0xdaba0b6eb09322e3ull;

return z ^ (z >> 32); }

uint16_t starstar16(uint16_t z) {

z = z * 5;

return ((z << 7) | (z >> 9)) * 9; }

uint16_t madeup16(uint16_t z) {

z = (uint16_t)((z ^ (z >> 8)) * 0xca6b);

z = (uint16_t)((z ^ (z >> 9)) * 0xae35);

return (uint16_t)(z ^ (z >> 8)); }

Fig. 4. Mixing functions used during testing

skip uses𝑚, 𝑧, 𝑠0, and 𝑥0 to initialize instance 0, then for all 1 ≤ 𝑗 < 𝜅 in ascending order, all
non-underlined values for instance 𝑖 are copied from those of instance 𝑖 − 1 and then the
state of the XBG is advanced one position.

jump is the same as skip, except that the XBG is advanced by 2𝑛/2 positions.
leap is the same as skip, except that the XBG is advanced by 23𝑛/4 positions.

7.2.1 Scaling the Number of Streams. Table 2 shows results from LXM instances that use a 64-bit
LCG, either xoroshiro128 or xoshiro256, and either one of three mixers or none. The combining
function is + (addition). They are tested for stream counts 1, 2, 4, 8, 16, . . . , 224 and also three other
non-power-of-two stream counts, chosen arbitrarily. For each stream count 𝜅 , five different initial-
ization procedures are tested: same, tree 2, skip, jump, and leap. We observe BigCrush fails only
the cases that use no mixing function and use skip, jump, or leap initialization. All three mixing
functions appear to be equally effective in this set of tests.
We ran similar tests using a 128-bit LCG (with a 64-bit multiplier and either a 64-bit or 128-bit

additive parameter) and xoroshiro128 for the XBG, using the same set of stream counts and the
same five initialization procedures. The results were quite similar to those in Table 2.

7.2.2 Tree-shaped (Potentially Parallel) Initialization Strategies. Table 3 shows BigCrush results
from LXM instances that use a 64-bit LCG, either xoroshiro128 or xoshiro256, and no mixing
function. The combining function is + (addition). They are tested for stream counts 28, 212, 214, 217,
221, and 224. For each stream count, six different branching factors for the tree are tested: 3, 4, 5, 16,
32, and 256 (the tests shown in Table 2 cover the case of branching factor 2). None of these tests
fail. Out of 216 tests, just one has a warning level as high as 3.

7.2.3 Instances with Very Similar Additive Constants. Table 4 shows BigCrush results from LXM
instances with 𝑘 = 32 and 𝑛 = 64, 𝑘 = 32 and 𝑛 = 128, 𝑘 = 64 and 𝑛 = 128, or 𝑘 = 64 and

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:19

Table 2. Test measurements for scaling the number of streams (see Section 7.2.1)

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
64 64 128 murmur64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 61 19 3 1 28 2.0E-7

64 64 128 murmur64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 54 26 4 37 3.0E-5

64 64 128 murmur64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 59 19 6 29 3.0E-6

64 64 128 murmur64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 58 22 4 34 3.8E-5

64 64 128 murmur64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 65 15 4 24 6.0E-5

64 64 128 degski64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 56 19 9 36 3.7E-5

64 64 128 degski64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 64 12 8 24 1.0E-5

64 64 128 degski64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 58 22 4 31 1.6E-6

64 64 128 degski64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 61 18 5 30 2.3E-5

64 64 128 degski64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 57 20 7 32 3.0E-5

64 64 128 lea64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 19 1 1 24 2.8E-7

64 64 128 lea64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 60 20 4 30 4.4E-6

64 64 128 lea64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 62 21 1 26 9.4E-5

64 64 128 lea64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 52 26 6 40 2.8E-5

64 64 128 lea64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 56 18 10 35 2.7E-6

64 64 128 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 50 29 5 38 4.6E-5

64 64 128 none tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 57 23 4 33 1.1E-5

64 64 128 none skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 2 0 1 0 0 0 0 81 6406 eps

64 64 128 none jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 41 7 2 0 0 0 1 33 103 eps

64 64 128 none leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 43 5 3 0 0 0 0 33 104 eps

64 64 256 murmur64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 16 5 23 7.1E-6

64 64 256 murmur64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 55 23 6 36 4.4E-6

64 64 256 murmur64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 57 21 6 32 1.1E-5

64 64 256 murmur64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 66 15 3 21 3.2E-5

64 64 256 murmur64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 59 20 5 30 1.9E-5

64 64 256 degski64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 60 17 7 30 1.8E-5

64 64 256 degski64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 60 20 4 26 8.1E-5

64 64 256 degski64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 51 27 6 39 1.6E-5

64 64 256 degski64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 62 19 2 1 31 2.4E-7

64 64 256 degski64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 58 22 4 30 1.1E-5

64 64 256 lea64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 18 3 22 7.4E-6

64 64 256 lea64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 53 24 7 36 1.9E-6

64 64 256 lea64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 59 18 7 26 3.7E-6

64 64 256 lea64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 18 3 26 3.0E-5

64 64 256 lea64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 62 17 5 27 2.4E-5

64 64 256 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 55 27 2 38 4.5E-5

64 64 256 none tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 52 30 2 41 3.2E-5

64 64 256 none skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 2 1 0 0 0 0 0 81 6318 eps

64 64 256 none jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 32 17 2 0 0 0 0 33 95 eps

64 64 256 none leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 38 13 0 0 0 0 0 33 86 eps

3360 complete runs of BigCrush Total CPU-thread time: 1433 days + 13:31:27
Stream counts used: { 2𝑗 | 0 ≤ 𝑗 ≤ 24 } ∪ { 1900547, 5242880, 12582912 } Modes used: u f g

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

148:20 Guy L. Steele Jr. and Sebastiano Vigna

Table 3. Test measurements for tree-shaped (potentially parallel) initialization strategies (see Section 7.2.2)

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
64 64 128 none tree 3 𝑚2 𝐴8 𝑆8 𝑋8 + 18 10 6 2 8 1.8E-5

64 64 128 none tree 4 𝑚2 𝐴8 𝑆8 𝑋8 + 18 15 3 3 4.8E-4

64 64 128 none tree 5 𝑚2 𝐴8 𝑆8 𝑋8 + 18 10 6 2 9 3.3E-5

64 64 128 none tree 16 𝑚2 𝐴8 𝑆8 𝑋8 + 18 9 9 11 1.3E-4

64 64 128 none tree 32 𝑚2 𝐴8 𝑆8 𝑋8 + 18 10 6 2 12 1.6E-5

64 64 128 none tree 256𝑚2 𝐴8 𝑆8 𝑋8 + 18 13 4 1 5 1.0E-4

64 64 256 none tree 3 𝑚2 𝐴8 𝑆8 𝑋8 + 18 15 3 3 1.1E-4

64 64 256 none tree 4 𝑚2 𝐴8 𝑆8 𝑋8 + 18 9 6 3 9 1.8E-5

64 64 256 none tree 5 𝑚2 𝐴8 𝑆8 𝑋8 + 18 11 7 7 1.5E-4

64 64 256 none tree 16 𝑚2 𝐴8 𝑆8 𝑋8 + 18 10 6 1 1 9 2.2E-7

64 64 256 none tree 32 𝑚2 𝐴8 𝑆8 𝑋8 + 18 14 3 1 7 4.2E-5

64 64 256 none tree 256𝑚2 𝐴8 𝑆8 𝑋8 + 18 9 6 3 12 4.1E-5

216 complete runs of BigCrush Total CPU-thread time: 96 days + 15:34:05
Stream counts used: { 28, 212, 214, 217, 221, 224 } Modes used: u f g

𝑛 = 256. The combining function is + (addition). We tested all 200 combinations of 25 stream
counts ({ 2𝑗 | 0 ≤ 𝑗 ≤ 24 }), two different multipliers𝑚4 and𝑚6 for the LCG, 2 mixing functions
(none, or murmur of the appropriate word size), and two ways to choose the additive constants. The
initialization strategy was same in all cases, except that the additive constants were chosen to be
very similar: for stream count 𝜅 , for 0 ≤ 𝑖 < 𝜅 , the additive parameter was either 1 + 32𝑖 or 𝐴8 + 32𝑖 .
All cases with no mixing function and a stream count below 1024 fail. All cases using a murmur
mixer passed, and out of 2000 tests, just one has a warning level as high as 3.

On the other hand, certain contrived tests fail BigCrush spectacularly: if the initial states 𝑠0 and
𝑥0 of two instances are identical (a situation unlikely in practice) and on top of that their additive
constants 𝑎 differ only in the high-order bit (even less likely), then the values produced by the
combining function will differ only in the high-order bit, and it’s asking too much of a fast mixing
function to produce apparently independent streams from such inputs.
We conclude that the mixing function may play a valuable defensive role when the additive

constants of the LCGs are somewhat similar, but in very rare cases may fail to do the job; it’s
important to try to initialize multiple instances to very different states.

7.2.4 Instances That Use xor for the Combining Function. Table 5, which may be compared with
Table 4, shows BigCrush results from LXM instances with either 𝑘 = 32 and 𝑛 = 64, or 𝑘 = 64 and
𝑛 = 256. The combining function is ⊕ (xor). As in Section 7.2.3, we tested all 200 combinations of
25 stream counts ({ 2𝑗 | 0 ≤ 𝑗 ≤ 24 }), two different multipliers𝑚4 and𝑚6 for the LCG, 2 mixing
functions (none, or murmur of the appropriate word size), and two ways to choose the additive
constants. The initialization strategy was the same in all cases, except that the additive constants
were chosen to be very similar: for stream count 𝜅 , for 0 ≤ 𝑖 < 𝜅 , the additive parameter was either
1 + 32𝑖 or 𝐴8 + 32𝑖 . All cases with no mixing function and a stream count below 1024 fail. All cases
using a murmur mixer passed, and out of 1000 tests, just two have a warning level as high as 3. (We
also tested multiplier𝑚2; the results, not shown here for lack of space, were similar.)
We conclude that when a good mixing function is used, using xor for the combining function

appears to be no worse than using addition (but note that using xor may be significantly worse
than using addition if no mixing function is used [Marsaglia 1985]).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:21

Table 4. Test measurements for instances with very similar additive constants (see Section 7.2.3)

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
32 32 64 none same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 55 18 4 0 0 0 37 11 105 eps

32 32 64 none same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 58 17 2 0 0 0 37 11 112 eps

32 32 64 none same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 58 17 2 0 0 0 37 11 97 eps

32 32 64 none same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 58 14 5 0 0 0 37 11 107 eps

32 32 64 murmur same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 87 32 6 44 3.5E-5

32 32 64 murmur same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 82 36 7 52 1.8E-6

32 32 64 murmur same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 93 27 5 35 4.1E-5

32 32 64 murmur same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 95 24 5 1 38 5.8E-7

32 32 128 none same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 64 15 5 0 0 0 35 6 86 eps

32 32 128 none same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 61 17 6 0 0 0 35 6 93 eps

32 32 128 none same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 64 11 9 0 0 0 35 6 101 eps

32 32 128 none same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 61 19 4 0 0 0 35 6 84 eps

32 32 128 murmur same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 90 29 6 41 2.4E-5

32 32 128 murmur same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 77 45 3 54 8.7E-6

32 32 128 murmur same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 82 34 9 58 1.6E-6

32 32 128 murmur same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 85 35 5 47 4.6E-5

64 64 128 none same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 77 28 9 0 0 0 9 2 59 eps

64 64 128 none same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 79 30 4 1 0 0 9 2 57 eps

64 64 128 none same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 78 28 7 1 0 0 9 2 63 eps

64 64 128 none same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 76 38 0 0 0 0 9 2 59 eps

64 64 128 murmur same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 89 31 5 46 1.1E-5

64 64 128 murmur same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 91 27 7 36 1.1E-5

64 64 128 murmur same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 87 31 7 45 8.0E-5

64 64 128 murmur same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 86 33 6 47 2.7E-5

64 64 256 none same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 89 19 5 2 0 0 9 1 43 eps

64 64 256 none same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 83 29 3 0 0 0 9 1 53 eps

64 64 256 none same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 80 28 7 0 0 0 9 1 56 eps

64 64 256 none same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 83 26 5 1 0 0 9 1 52 eps

64 64 256 murmur same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 88 35 2 42 8.2E-6

64 64 256 murmur same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 87 30 8 44 3.4E-5

64 64 256 murmur same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 84 33 8 48 6.7E-6

64 64 256 murmur same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 93 26 6 40 6.3E-6

4000 complete runs of BigCrush Total CPU-thread time: 1845 days + 12:33:10
Stream counts used: { 2𝑗 | 0 ≤ 𝑗 ≤ 24 } Modes used: u v w f g

7.2.5 Scaling the State Size. One way to see how a family of prngs behaves is to consider the
behavior of very small members of the family. We tested three small variants: 𝑤 = 32, 𝑘 = 32,
𝑛 = 128; 𝑤 = 32, 𝑘 = 32, 𝑛 = 64; and𝑤 = 16, 𝑘 = 16, 𝑛 = 32. In each case the combining function
was addition.

Small prngs: Table 6 shows BigCrush results for 𝑤 = 32, 𝑘 = 32, and 𝑛 either 64 or 128. The
64-bit XBG algorithm is xoroshiro64 [Blackman and Vigna 2018], that is,

{ q1 ^= q0; q0 = (q0 << 26) | (q0 >> 6); q0 = q0 ^ q1 ^ (q1 << 9);

q1 = (q1 << 13) | (q1 >> 19); }

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

148:22 Guy L. Steele Jr. and Sebastiano Vigna

Table 5. Test measurements for instances that use xor for the combining function (see Section 7.2.4)

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
32 32 64 none same 𝑚4 1+32𝑖 𝑆8 𝑋8 ⊕ 125 47 16 2 0 0 0 35 25 149 eps

32 32 64 none same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 49 13 1 2 0 0 35 25 151 eps

32 32 64 none same 𝑚6 1+32𝑖 𝑆8 𝑋8 ⊕ 125 48 13 4 0 0 0 35 25 142 eps

32 32 64 none same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 48 12 5 0 0 0 35 25 171 eps

32 32 64 murmur same 𝑚4 1+32𝑖 𝑆8 𝑋8 ⊕ 125 94 29 2 38 4.6E-6

32 32 64 murmur same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 97 25 3 33 3.7E-5

32 32 64 murmur same 𝑚6 1+32𝑖 𝑆8 𝑋8 ⊕ 125 88 32 5 42 2.1E-5

32 32 64 murmur same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 86 34 5 46 2.2E-5

64 64 128 none same 𝑚4 1+32𝑖 𝑆8 𝑋8 ⊕ 125 76 24 4 0 0 0 7 14 64 eps

64 64 128 none same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 78 19 7 0 0 0 7 14 64 eps

64 64 128 none same 𝑚6 1+32𝑖 𝑆8 𝑋8 ⊕ 125 70 31 3 0 0 0 7 14 81 eps

64 64 128 none same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 68 33 3 0 0 0 7 14 83 eps

64 64 128 murmur same 𝑚4 1+32𝑖 𝑆8 𝑋8 ⊕ 125 85 31 8 1 49 7.6E-7

64 64 128 murmur same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 82 35 7 1 57 2.0E-7

64 64 128 murmur same 𝑚6 1+32𝑖 𝑆8 𝑋8 ⊕ 125 81 35 9 51 2.3E-5

64 64 128 murmur same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 91 28 6 40 1.9E-5

2000 complete runs of BigCrush Total CPU-thread time: 832 days + 23:59:39
Stream counts used: { 2𝑗 | 0 ≤ 𝑗 ≤ 24 } Modes used: u v w f g

with output q0. The 128-bit XBG algorithm is xoshiro128 [Blackman and Vigna 2018], that is,

{ uint32_t t = q1 << 9; q2 ^= q0; q3 ^= q1; q1 ^= q2; q0 ^= q3;

q2 ^= t; q3 = (q3 << 11) | (q3 >> 21); }

with output q1. We tested all 240 combinations of 25 stream counts ({ 2𝑗 | 0 ≤ 𝑗 ≤ 24 }), 4 mixing
functions (none, murmur32, degski32, and lea32), and 2 initialization strategies (same and tree

2). For 𝑛 = 64, the version with no mixer always failed when the number of streams was less than
64; for 𝑛 = 128, the version with no mixer always failed when the number of streams was less than
16. In all other cases, no warning level worse than 2 was observed, except for one case with 𝑛 = 64

and stream count 256, which had warning level 3.
Very small prngs: Table 7 shows BigCrush results for 𝑤 = 16, 𝑘 = 16, 𝑛 = 32; the 32-bit XBG

algorithm is

{ q ^= (q << 13); q ^= (q >> 17); q ^= (q << 5); }

which uses one of the triples of shift constants recommended by Marsaglia [2003, ğ3]. We tested all
240 combinations of 40 stream counts ({ 2𝑗 | 0 ≤ 𝑗 ≤ 24 } ∪ {256 + 16 𝑗 | 1 ≤ 𝑗 ≤ 15 }), 3 mixing
functions (none, starstar16, and madeup16), and 2 initialization strategies (same and tree 2). The
version with no mixer always failed when the number of streams was less than 336; no warning
level worse than 2 was observed for stream counts above 367. The starstar16 mixer produced
no warning level worse than 2. The madeup16 mixer (so called because its constants were chosen
at whim, with no attempt to optimize avalanche statistics) also produced no warning level worse
than 2. So even at this very small scale we see that, on the one hand, even a simple mixing function
clearly improves the quality, and on the other hand, even a simple mixing function suffices to get
adequate quality. Focusing on the single-stream case, we find it remarkable that a prng with just
48 bits of state is able to pass BigCrush, and that (with the madeup16 mixer) PractRand tests 1TB
of its output (239 generated values) before failing it (see Section 7.3).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:23

Table 6. Test measurements for scaling the state size: 32-bit generators (see Section 7.2.5)

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
32 32 64 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 34 19 3 1 0 0 15 3 49 eps

32 32 64 none tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 37 18 2 0 0 0 15 3 52 eps

32 32 64 murmur32 same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 41 29 5 37 8.7E-6

32 32 64 murmur32 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 53 17 5 25 7.5E-6

32 32 64 degski32 same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 49 24 2 27 2.3E-5

32 32 64 degski32 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 48 25 2 30 4.0E-5

32 32 64 lea32 same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 48 22 5 33 3.9E-5

32 32 64 lea32 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 57 15 3 20 5.3E-5

32 32 128 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 42 19 2 0 0 0 12 36 eps1

32 32 128 none tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 44 17 2 0 0 0 12 39 eps1

32 32 128 murmur32 same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 52 19 4 31 2.5E-5

32 32 128 murmur32 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 52 21 2 29 5.1E-6

32 32 128 degski32 same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 60 11 4 17 1.1E-5

32 32 128 degski32 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 55 15 5 25 1.9E-5

32 32 128 lea32 same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 61 11 3 16 5.3E-5

32 32 128 lea32 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 56 17 2 24 3.5E-5

1200 complete runs of BigCrush Total CPU-thread time: 599 days + 19:18:47
Stream counts used: { 2𝑗 | 0 ≤ 𝑗 ≤ 24 } Modes used: u f g

Table 7. Test measurements for scaling the state size: 16-bit generators (see Section 7.2.5)

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
16 16 32 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 120 38 28 10 2 0 0 22 20 203 eps

16 16 32 none tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 120 52 15 8 2 1 0 22 20 193 eps

16 16 32 madeup16 same 𝑚2 𝐴8 𝑆8 𝑋8 + 120 85 30 5 48 5.6E-6

16 16 32 madeup16 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 120 77 38 5 47 1.6E-5

16 16 32 starstar16 same 𝑚2 𝐴8 𝑆8 𝑋8 + 120 81 35 4 47 2.3E-5

16 16 32 starstar16 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 120 86 30 4 40 2.5E-5

720 complete runs of BigCrush Total CPU-thread time: 489 days + 6:50:16
Stream counts used: { 2𝑗 | 0 ≤ 𝑗 ≤ 24 } ∪ { 28+24𝑘 | 1 ≤ 𝑘 ≤ 15 } Modes used: u f g

7.2.6 LCG Multipliers. Most of our testing has used multipliers recommended by L’Ecuyer [1999b,
Table 4, p. 258]; we have also run tests using multipliers recently discovered by Steele and Vigna
[2021, Table 5, p. 17]. We have not detected any significant difference in test results; if LXM quality
strongly depends on LCG multiplier quality, more sensitive, more specialized tests may be required.

7.3 Results of PractRand Tests

Many PractRand tests suggested LXM would generally produce sequences of good quality; for
example, one set of 216 runs tested 36 different LXM generators with a tree 2 initialization strategy
for stream counts 1, 2, 32, 211, 215, and 220; they detected no problems except that (a) for stream count
211, 32-bit LXM generators with no mixing function failed after 128GB; (b) 16-bit LXM generators
using no mixing function generally failed; and (c) 16-bit LXM generators using madeup16 failed
for stream counts 1 (at 1TB) and 2 (at 4TB). Other tests picked up the (unsurprising) fact that
starstar (never intended for this purpose) is a weaker mixer than MurmurHash3 and its variants.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

148:24 Guy L. Steele Jr. and Sebastiano Vigna

Table 8. Comparative timings (all measurements in nanoseconds per word generated)

size Haswell ARM

(in bits) gcc clang gcc clang
𝑚 𝑎 out inline noinline inline noinline inline noinline inline noinline

L32X64 32 32 32 1.615 2.311 1.602 2.290 2.566 4.076 2.564 4.320

L32XX64 32 32 32 1.679 2.321 1.713 2.321 2.566 4.076 2.641 4.321

L32X128 32 32 32 1.547 2.503 1.549 2.464 2.885 4.444 2.690 4.859

SplitMix Ð 64 64 1.201 1.688 0.967 1.681 2.401 3.512 2.401 3.381

L64X128 64 64 64 1.614 2.488 1.679 2.232 3.601 4.603 3.602 4.393

L64XX128 64 64 64 1.528 2.650 1.713 2.239 3.601 4.609 3.602 4.399

L64X256 64 64 64 1.680 2.734 1.560 2.431 3.601 4.901 3.601 5.146

L128AX128 64 64 64 1.859 2.915 1.837 3.122 7.602 8.006 6.402 7.350

L128BX128 64 128 64 1.859 2.714 1.831 2.717 7.602 9.231 6.402 7.396

L128CX128 128 64 64 2.566 2.889 1.923 2.881 7.602 10.306 7.602 9.039

L128DX128 128 128 64 2.563 3.232 1.933 2.856 7.602 10.481 7.602 9.133

L128EX128 65 64 64 2.466 3.005 1.919 2.881 7.602 8.027 7.602 7.363

L128FX128 65 128 64 2.465 2.780 1.929 2.772 7.602 8.430 7.602 7.378

L128AX256 64 64 64 1.813 3.212 1.720 2.881 7.602 7.967 6.402 7.477

L128BX256 64 128 64 1.812 2.883 1.773 2.881 7.602 8.027 6.402 7.373

L128CX256 128 64 64 2.571 3.129 1.919 2.933 7.602 9.165 7.602 9.193

L128DX256 128 128 64 2.568 3.627 1.931 3.122 7.602 9.333 7.602 9.200

L128EX256 65 64 64 2.542 3.120 1.920 2.881 7.602 7.377 7.602 7.401

L128FX256 65 128 64 2.537 3.231 1.930 2.929 7.602 7.683 7.602 7.396

8 COMPARATIVE TIMING TESTS

Table 8 shows timings for SplitMix and a selection of LXM generators representative of various
configurations of generator state. We tested two architectures: an Intel® Core™ i7-8700B CPU
@3.20GHz (Haswell) and an AWS Graviton 2 processor based on 64-bit Arm Neoverse cores
@2.5GHz. We performed our tests using two different compilers, gcc 10 (11 on Haswell) and clang
10. In each case, we tested the next-state function in two ways: forcing inlining, or blocking inlining;
in the second case, the compiler has to reload the constants involved at each call, and we also pay
for the function call itself. The two timings gives a differential view of the cost of pure computation
(without constant loading) versus global cost. We report the average of ten runs; the measurements
are very stable, with relative standard error below 1%, and in almost all cases below 0.5%.

The results depend on both architecture and compilers; in general, clang faster code, especially
with larger state and constants; the case of SplitMix is very evident, but note that the timing
with gcc 10 on Haswell is similar to that of clang, so that specific gap appears to be a scheduling
defect introduced in version 11. The main visible difference in timing is that between 64-bit and
larger multipliers. We see no relevant difference between 65-bit and 128-bit multipliers, except for
the no-inline case of the ARM architecture, where the additional time required to load the larger
constant is very visible. For the same reason, the difference in timing between the inline and the
no-inline benchmarks on ARM is sometimes very large. Always on ARM, clang generates better
inline code for 64-bit multipliers with respect to larger sizes, contrarily to gcc.
The size of the additive constant 𝑎 (64 or 128 bits) appears to have little impact; in some cases,

paradoxically a larger constant generates a shorter timing. Quirks of this kind are unavoidable
because the models used by compilers to optimize instruction choice and pipelining are not perfect.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:25

9 MORE ABOUT JUMPING AND SPLITTING

The standard way to jump an XBG by 𝑗 positions is use some precomputed representation of𝑈 𝑗 ,
then apply that matrix to the XBG state. One common convention is that “jumpž advances by
2𝑛/2 positions and “leapž (“long jumpž) advances by 23𝑛/4 positions. This is advantageous for LXM:
jumping by a power of 2 at least as large the period of the LCG leaves the LCG state unchanged.
But the representation of𝑈 𝑗 is typically not as efficient to apply as𝑈 .

Imagine instead that we wish to make an LXM jump backwards by 2𝑛 − 1 positions; that would
leave the XBG state unchanged, and put the LCG in the same state as if we had advanced the LCG
just one position. So advancing just the LCG is a simple way to get a cheaper LXM jump function.
And leaping backward by, say, 2𝑘/2 (2𝑛 − 1) positions is equally easy, because one can precompute
constants𝑚′ and 𝑎′ such that 𝜆𝜎.(𝑚′𝜎 + 𝑎′) mod 2𝑘 will advance the LCG by 2𝑘/2 positions.

But the point of jump functions is usually to create multiple generators in such a way that their
generated sequences will not overlap. We believe (but admit that we have not yet proved) that the
additive parameter provides a very simple way to do that if the mixing function is good: just ensure
that each instance has a different additive parameter. Choosing the additive value at random, as the
split()method does, may do that with high probability if 2𝑘 is sufficiently larger than the number
of instances. On the other hand, it is very easy for the splits() method to ensure that all the
generators in a single generated stream have different additive parameters; this is even easier than
the cheap strategy for jumping. Testing seems to confirm that this strategy is effective, and splitting
is easier to use than jumping in applications structured to use recursive fork-join parallelism.

10 CHOOSING AN LXM ALGORITHM

If we were presenting a single algorithm, our message would be simple: “use our new algorithm.ž
But because we have described a large family of algorithms and tested several, we offer the following
suggestions for how to choose an algorithm appropriate for a specific application.

If an application requires a random number generator algorithm that is cryptographically secure,
then no member of the LXM family is appropriate; programs coded in the Java language should
continue to use an instance of the class java.security.SecureRandom.
For applications with no special requirements, L64X128MixRandom has a good balance among

speed, space, and period, and is suitable for both single-threaded and multi-threaded applications
when used properly (a separate instance for each thread). But for a single-threaded application,
Xoroshiro128PlusPlus is even smaller and faster, and certainly has a sufficiently long period.

For an application running in a 32-bit hardware environment and using only one thread or a
small number of threads, L32X64MixRandom may be a good choice for reasons of speed and space.
For an application that uses many threads that are allocated in one batch at the start of the

computation, one may prefer either a jumpable generator such as Xoroshiro128PlusPlus or
Xoshiro256PlusPlus, or a splittable generator such as L64X128MixRandom or L64X256MixRandom.

For an application that creates many threads dynamically, perhaps through the use of Java split-
erators, we recommend a splittable generator such as L64X128MixRandom or L64X256MixRandom.
If the number of generators created dynamically may be very large (millions or more), then
L128X128MixRandom or L128X256MixRandom, which use a 128-bit (rather than 64-bit) parameter
for the LCG subgenerator, will make it much less likely that two instances use the same state cycle.
For an application that uses 𝑛-tuples of consecutively generated values, it may be desirable to

use a generator that is 𝑘-equidistributed such that 𝑘 ≥ 𝑛. The generator L64X256MixRandom is
provably 4-equidistributed, and L64X1024MixRandom is provably 16-equidistributed.

For applications that generate large permutations, it may be best to use a generator whose period
is much larger than the total number of possible permutations; otherwise it will be impossible

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

148:26 Guy L. Steele Jr. and Sebastiano Vigna

to generate some of the intended permutations. For example, if the goal is to shuffle a deck
of 52 cards, the number of possible permutations is 52! (52 factorial), which is larger than 2225

(but smaller than 2226), so it may be best to use a generator whose period at least 2256, such as
L64X256MixRandom or L64X1024MixRandom or L128X256MixRandom or L128X1024MixRandom. (It
is of course also necessary to provide sufficiently many seed bits when the generator is initialized,
or else it will still be impossible to generate some of the intended permutations.)

11 RELATED WORK

Schaathun [2015] has recently surveyed a number of techniques for splittable pseudorandom gener-
ators. He traces the origin of the ideas to the 1980s, and in particular to Warnock’s work [Warnock
1983] in particle physics, where splitting occurs when a particle being simulated spawns new
particles. A few years later several studies proposed to use different additive constants of LCGs
to perform splitting, generating a Lehmer tree, until Durst [1989] proved that such sequences are
strictly correlated, as we discuss in Section 6.5.1. Notably, Schaathun concludes that the crypto-
graphic approach of Claessen and Pałka [2013], which uses cryptographic hashing on the splitting
tree, is the safest and the only one providing some theoretical guarantees. Later, Steele, Lea, and
Flood introduced SplitMix [2014, ğ7]; while they do not perform comparative measurements with
Claessen and Pałka’s approach, they conjecture that the latter should yield sequences with better
statistical qualities than SplitMix, while SplitMix should be faster.

Also the combination of generators of different nature has a long history. A relatively recent video
on YouTube [Losego 2016] has reverse-engineered the code used for random number generation by
the well-known video game Super Mario World [Nintendo 1990], which was released on November
21, 1990. The code merits study as an example of excellent engineering within a severely resource-
constrained computing environment (a Ricoh 5A22 CPU, closely related to the WDC 65C816), and
it happens to be very closely related to the LXM algorithm. The generator produces two 8-bit bytes
each time it is called; each byte is the result of one call to a subroutine. The subroutine implements
two subgenerators, each with one 8-bit byte of state, and the output of the subroutine is the bitwise
xor of the outputs 𝑠 and 𝑡 of the two subgenerators. One subgenerator is an LCG whose period
is 256, and the other an XBG using an F2-affine state update function whose period is 217, so the
overall period of the subgenerator (viewed as a generator of bytes) is 55552. (As far as we can tell,
the principal advantage of using an F2-affine state update function rather than a purely F2-linear
functionÐeither would have been equally easy to implementÐis that the state of the prng can be
reset by zeroing both state bytes.) The overall period of the main generator (viewed as a generator
of pairs of bytes) is therefore 27776. The update computation for the two subgenerators is

𝑠 ← 5 × 𝑠 + 1; 𝑡 ←
(

𝑡 ≪ 1
)

⊕
(

(𝑡 ⊕ (𝑡 ≪ 3))≫ 7
)

⊕ 1

The spectral quality of the multiplier 5 is suboptimal, but on a microprocessor with no multiply
instruction, 5 is the fastest nontrivial multiplier that provides full period (the entire LCG update
is five instructions). The period 217 for the xor-based subgenerator is not the best possible, but
updating a subgenerator of period 255 would take more instructions; 217 is the longest period
possible among xor-based subgenerators that use relatively few instructions (the entire update is
eight instructions) and have odd period. Computing the bitwise xor of the subgenerator outputs
rather than the sum saves one instruction on a microprocessor that has no add instruction, only
add-with-carry. The result is a prng that is small, fast, and adequate in quality for the application.
Generators in Marsaglia and Zaman’s KISS family [Marsaglia and Zaman 1993; Rose 2018]

combine three or four generators of different nature to improve the randomness of the output.
L’Ecuyer and Granger-Piché [2003] study combined generators with components from different

families, focusing on combining one linear subgenerator with another subgenerator that may or

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:27

may not be linear. They prove that, under appropriate conditions, combining an LFSR (which is one
kind of XBG) with another generator will preserve equidistribution properties of the LFSR. They
also test a number of combined generators and conclude that “combining two different types of
linear generators, such as a LCG or MRG with a LFSR, seems to do as well as the linear-nonlinear
combinations, at least from the empirical perspective.ž
The xorgens generator [Brent 2010] combines an F2-linear generator using four xorshift op-

erations with a Weyl generator. The author furthermore suggests subjecting the output of the
Weyl generator to a simple mixing function 𝜆𝜎.𝜎 ⊕ rotate(𝜎,𝛾) (for some constant 𝛾 ≈ 𝑤/2) before,
rather than after, adding it to the output of the xorshift generator.

Recently a number of interacting online blogs and projects have reported discovering improved
mixing functions, as well as improved tools and techniques for discovering and testing them
[Ettinger 2019; Evensen 2018, 2019, 2020; Mulvey 2016; Wellons 2018, 2019]; we speculate that such
mixers might provide useful improvements when used in LXM algorithms. They observe that on
64-bit words, for any 0 < 𝑎 < 𝑏 < 64, 𝜆𝜏 .𝜏 ⊕ rotate(𝜏, 𝑎) ⊕ rotate(𝜏, 𝑏) is a bijective transformation.

12 CONCLUSIONS AND FUTURE WORK

At the end of their paper, Steele, Lea, and Flood [2014] commented: “It would be a delightful outcome
if, in the end, the best way to split off a new prng is indeed simply to ‘pick one at random.’ ž Perhaps
we have now achieved that: our testing suggests that if the arguments to the LXM constructor are
themselves chosen uniformly at randomÐwith no need to filter out any “weak valuesž other than
ensuring that the additive parameter a is odd and that the initial state of the XBG subgenerator
is nonzeroÐthen the interleaved outputs of two or more generators constructed in this way will
pass the BigCrush test suite [L’Ecuyer and Simard 2007; Simard 2009] and also the PractRand test
suite [Doty-Humphrey 2011ś2021] with extremely high probability.

The SplitMix algorithm used in JDK8 has 127 bits of state (of which 64 are updated per 64 bits
generated) and uses 9 arithmetic operations per 64 bits generated [Steele, Lea, and Flood 2014]. The
64-bit LXM algorithm L64X128, which has a 64-bit LCG and xoroshiro128 as subgenerators, uses
255 bits of state (of which 192 are updated per 64 bits generated) and uses 17 arithmetic operations
(or possibly 14, on architectures that allow operations on 32-bit halfwords of 64-bit registers) per 64
bits generated (see Figure 1). Our timing measurements confirm that on contemporary architectures
and using popular compilers, the basic generate operation for L64X128 is somewhat slower than
that for SplitMix, but never by more than a factor of 2. For applications in which it is desired to
have a significantly smaller probability of statistical correlations among multiple generators being
used by parallel tasks, especially when it is desirable to create new generator instances on the fly
(for example, when forking new threads), L64X128 may be very attractive. This instance of LXM,
and several others, will be provided in JDK17 later in 2021 as part of a new RandomGenerator API
designed to make it easier for applications to use a variety of prng algorithms interchangeably.
Work yet to be done includes (1) exploration of even better mixing functions, (2) exploration

of different congruential components, such as Marsaglia’s multiply-with-carry generators, and
(3) even more thorough testing of (a) LXM generator combinations and (b) a simplified generator
that consists only of an additive constant (or a Weyl generator), an XBG generator, a combining
function, and a mixing function.

ACKNOWLEDGMENTS

The first author thanks Melissa O’Neill of Harvey Mudd College for her critique of very early stages
of this work, which has allowed us to greatly improve our presentation. We thank James Laskey,
Joseph Darcy, and other members of the Oracle Java Development team for their assistance in
testing and integrating specific instances of the LXM algorithm for deployment in JDK17.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

148:28 Guy L. Steele Jr. and Sebastiano Vigna

REFERENCES

Austin Appleby. 2011. MurmurHash3 (project wiki page). 3 April 2011. https://github.com/aappleby/smhasher/wiki/

MurmurHash3 (also at Internet Archive 10 March 2021 11:25:05).

Describes the MurmurHash3 hashing algorithm, and gives code for 32-bit and 64-bit finalizers (mixing functions).

Formerly at http://code.google.com/p/smhasher/wiki/MurmurHash3 Retrieved 10 Sept. 2013.

Austin Appleby. 2016. SMHasher (GitHub project). 8 Jan. 2016. https://github.com/aappleby/smhasher (also at Internet

Archive 6 April 2021 20:10:30).

The home for the MurmurHash family of hash functions along with the SMHasher test suite used to verify them.

David Blackman and Sebastiano Vigna. 2018. Scrambled Linear Pseudorandom Number Generators. 3 May 2018. 41 pages.

https://arxiv.org/abs/1805.01407 To appear in ACM Transactions on Mathematical Software.

Lenore Blum, Manuel Blum, and Mike Shub. 1986. A simple unpredictable pseudo-random number generator. SIAM Journal

on computing 15, 2, 364ś383.

Manuel Blum and Silvio Micali. 1984. How to Generate Cryptographically Strong Sequences of Pseudorandom Bits. SIAM J.

Comput. 13, 4, 850ś864. https://doi.org/10.1137/0213053

Richard P. Brent. 2004. Note on Marsaglia’s Xorshift Random Number Generators. Journal of Statistical Software 11, 5 (Aug.),

1ś5. https://doi.org/10.18637/jss.v011.i05 Also at https://maths-people.anu.edu.au/~brent/pd/rpb218.pdf

Richard P. Brent. 2010. Some long-period random number generators using shifts and xors. 10 April 2010. 11 pages.

https://arxiv.org/abs/1004.3115

Robert G. Brown, Dirk Eddelbuettel, and David Bauer. 2003ś2006. Dieharder: A Random Number Test Suite, version 3.31.1.

2003ś2006. https://webhome.phy.duke.edu/~rgb/General/dieharder.php (also at Internet Archive 3 July 2017 03:00:47).

Dieharder is a random number generator (rng) testing suite. It is intended to test generators, not files of possibly

random numbers, as the latter is a fallacious view of what it means to be random.

Dieharder is a tool designed to permit one to push a weak generator to unambiguous failure (at the e.g. 0.0001%

level), not leave one in the łlimbož of 1% or 5% maybe-failure. It also contains many tests and is extensible so that

eventually it will contain many more tests than it already does.

Koen Claessen and Michał H. Pałka. 2013. Splittable Pseudorandom Number Generators Using Cryptographic Hashing. In

Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell (Boston, Massachusetts, USA) (Haskell ’13). Association for

Computing Machinery, New York, New York, USA (Sept.), 47ś58. ISBN 9781450323833. https://doi.org/10.1145/2503778.

2503784

R. R. Coveyou. 1969. Random Number Generation Is Too Important to Be Left to Chance. In Studies in Applied Mathematics

3, B. R. Agins and M. H. Kalos (Eds.). Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, USA,

70ś111.

12.1. There is at present no RNG known to be superior to an SLCRNG [Simple Linear Congruential Random Number

Generator 𝑡𝑘+1 ≡ 𝜆𝑡𝑘 + 𝜇 mod 𝑃] with a carefully chosen multiplier 𝜆. The choice of addend 𝜇 is not of great

importance.

12.2.With computers of adequate word length, the choice between multiplicative (𝜇 = 0) and other SLCRNG is of no

great statistical importance. . . .

12.4. The absence of the apologetic prefix łpseudo,ž usually affixed to RNG, is not accidental. I know of no useful

definition of łstochastic processž which excludes these RNG. Nor is this a triviality; the identification of randomness

with ignorance is fundamentally mistaken. Fully deterministic processes are stochastic processes. but if we know

nothing about a process, one of the things we do not know is that it is a stochastic process. . . .

12.6. No practical amount of empirical testings of RNG can suffice for acceptance. Of course, poor performance

is standard in standard statistical tests as a basis for rejection. Hence reports of good performance of RNG, not

supported by theory, must be deemed irrelevant.

A collection of papers presented by invitations at the Symposia on Applied Probability and Monte Carlo Methods and

Modern Aspects of Dynamics sponsored by the Air Force Office of Scentific Research at the 1967 National Meetings of

SIAM in Washington, D.C., June 11ś15, 1967.

R. R. Coveyou and R. D. Macpherson. 1967. Fourier Analysis of Uniform Random Number Generators. J. ACM 14, 1 (Jan.),

100ś119. https://doi.org/10.1145/321371.321379

degski. 2018. invertible_hash_functions.hpp. https://gist.github.com/degski/6e2069d6035ae04d5d6f64981c995ec2 (also

at Internet Archive 23 March 2019 04:52:58). Code for four hash functions similar in structure to MurmurHash3.

Chris Doty-Humphrey. 2011ś2021. PractRand. 2011ś2021. http://pracrand.sourceforge.net/ (also at Internet Archive 12

Nov. 2020 03:13:23). Undated; the year 2011 for its first appearance has been inferred from external sources. The software

is called “PractRandž but the SourceForge project name is “pracrandž.

Mark J. Durst. 1989. Using Linear Congruential Generators for Parallel Random Number Generation. In Proceedings of the

21st Conference on Winter Simulation (Washington, D.C., USA) (WSC ’89). Association for Computing Machinery, New

York, New York, USA, 462ś466. ISBN 0911801588. https://doi.org/10.1145/76738.76798

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://web.archive.org/web/20210310112505/https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher
https://web.archive.org/web/20210406201030/https://github.com/aappleby/smhasher
https://web.archive.org/web/20210406201030/https://github.com/aappleby/smhasher
https://arxiv.org/abs/1805.01407
https://doi.org/10.1137/0213053
https://doi.org/10.18637/jss.v011.i05
https://maths-people.anu.edu.au/~brent/pd/rpb218.pdf
https://arxiv.org/abs/1004.3115
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://web.archive.org/web/20170703030047/https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://doi.org/10.1145/2503778.2503784
https://doi.org/10.1145/2503778.2503784
https://doi.org/10.1145/321371.321379
https://gist.github.com/degski/6e2069d6035ae04d5d6f64981c995ec2
https://web.archive.org/web/20190323045258/https://gist.github.com/degski/6e2069d6035ae04d5d6f64981c995ec2
http://pracrand.sourceforge.net/
https://web.archive.org/web/20201112031323/http://pracrand.sourceforge.net/
https://web.archive.org/web/20201112031323/http://pracrand.sourceforge.net/
https://doi.org/10.1145/76738.76798

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:29

Shlomo Engelberg. 2015. A Mathematical Introduction To Control Theory (second ed.). Series in Electrical and Computer

Engineering, Vol. 4. Imperial College Press, London, England. ISBN 9781860945700.

Tommy Ettinger. 2019. PelicanRNG. 16 July 2019. https://github.com/tommyettinger/sarong/blob/master/src/main/java/

sarong/PelicanRNG.java (also at Internet Archive 14 April 2021 03:10:13). GitHub project; accessed April 2, 2021.

Pelle Evensen. 2018. On the mixing functions in “Fast Splittable Pseudorandom Number Generatorsž, MurmurHash3 and

David Stafford’s improved variants on the MurmurHash3 finalizer (blog post). 13 July 2018. http://mostlymangling.

blogspot.com/2018/07/on-mixing-functions-in-fast-splittable.html (also at Internet Archive 18 Jan. 2021 16:26:29).

Pelle Evensen. 2019. Better, stronger mixer and a test procedure (blog post). 24 Jan. 2019. http://mostlymangling.blogspot.

com/2019/01/better-stronger-mixer-and-test-procedure.html (also at Internet Archive 1 Dec. 2020 06:10:00).

Pelle Evensen. 2020. NASAM: Not Another Strange Acronym Mixer! (blog post). 3 Jan. 2020. http://mostlymangling.

blogspot.com/2020/01/nasam-not-another-strange-acronym-mixer.html (also at Internet Archive 7 Feb. 2021 12:33:45).

George E. Forsythe. 1951. Generation and Testing of Random Digits at the National Bureau of Standards, Los Angeles. In

Monte Carlo Method, A. S. Householder, G. E. Forsythe, and H. H. Germond (Eds.). National Bureau of Standards Applied

Mathematics Series, Vol. 12. United States Government Printing Office, Washington, DC, USA (11 June), Chapter 12,

34ś35. https://babel.hathitrust.org/cgi/pt?id=osu.32435030295547 (entire proceedings). Proceedings of a symposium

held June 29, 30, and July 1, 1949, in Los Angeles, California, under the sponsorship of the RAND Corporation, and the

National Bureau of Standards, with the cooperation of the Oak Ridge National Laboratory.

Solomon W. Golomb. 2006. Shift Register Sequences: A Retrospective Account. In Sequences and Their Applications ś SETA

2006, Guang Gong, Tor Helleseth, Hong-Yeop Song, and Kyeongcheol Yang (Eds.). Springer, Berlin and Heidelberg,

Germany, 1ś4. ISBN 978-3-540-44524-1.

Solomon W Golomb. 2017. Shift Register Sequences (3rd revised ed.). World Scientific, Hackensack, New Jersey, USA. ISBN

978-9814632003. https://doi.org/10.1142/9361 See also first edition, 1967, Holden-Day, San Francisco, California, USA;

second edition, 1982, Aegean Park Press, Laguna Hills, California, USA, ISBN 978-0894120480.

Mark Goresky and Andrew Klapper. 2012. Algebraic Shift Register Sequences. Cambridge University Press, Cambridge, UK.

514 pages. ISBN 9781107014992.

Preston C. Hammer. 1951. The Mid-Square Method of Generating Digits. In Monte Carlo Method, A. S. Householder, G. E.

Forsythe, and H. H. Germond (Eds.). National Bureau of Standards Applied Mathematics Series, Vol. 12. United States

Government Printing Office, Washington, DC, USA (11 June), Chapter 11, 33. https://babel.hathitrust.org/cgi/pt?id=osu.

32435030295547 (entire proceedings). Proceedings of a symposium held June 29, 30, and July 1, 1949, in Los Angeles,

California, under the sponsorship of the RAND Corporation, and the National Bureau of Standards, with the cooperation

of the Oak Ridge National Laboratory.

Donald E. Knuth. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algorithms (third ed.). Addison-Wesley,

Reading, Massachusetts, USA. ISBN 9780201896848.

Doug Lea. 2013. SplittableRandom progress (private communication). 15 Nov. 2013ś. Series of three email messages on the

subject of MurmurHash3-like mixing functions.

Pierre L’Ecuyer. 1999a. Good Parameters and Implementations for CombinedMultiple Recursive RandomNumber Generators.

Operations Research 47, 1 (Jan.), 159ś164. https://doi.org/10.1287/opre.47.1.159

Pierre L’Ecuyer. 1999b. Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure. Math. Comp.

68, 225 (Jan.), 249ś260. https://doi.org/10.1090/S0025-5718-99-00996-5

Pierre L’Ecuyer. 2017. History of Uniform Random Number Generation. In Proceedings of the 2017 Winter Simulation

Conference (WSC) (Las Vegas, Nevada, USA), W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and

E. Page (Eds.). IEEE (Dec.), 202ś230. https://doi.org/10.1109/WSC.2017.8247790 Also at https://hal.inria.fr/hal-01561551

Pierre L’Ecuyer and Jacinthe Granger-Piché. 2003. Combined generators with components from different families. Mathemat-

ics and Computers in Simulation 62, 3 (3 March), 395ś404. https://doi.org/10.1016/S0378-4754(02)00234-3 Preprint at https:

//www.iro.umontreal.ca/~lecuyer/myftp/papers/linnlin.pdf Also at https://www.researchgate.net/publication/222418141

3rd IMACS Seminar on Monte Carlo Methods.

Pierre L’Ecuyer and François Panneton. 2009. F2-Linear Random Number Generators. In Advancing the Frontiers of

Simulation: A Festschrift in Honor of George Samuel Fishman, Christos Alexopoulos, David Goldsman, and James R.

Wilson (Eds.). International Series in Operations Research & Management Science, Vol. 133. Springer Science and

Business Media, New York, New York, USA, 169ś193. ISBN 9781441908162. https://doi.org/10.1007/b110059_9

Also at https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.483.8737&rep=rep1&type=pdf (retrieved 14 April

2021) Also at https://www.researchgate.net/profile/Pierre-Lecuyer/publication/225226425_F2-Linear_Random_Number_

Generators/links/09e415108471274e7f000000/F2-Linear-Random-Number-Generators.pdf (retrieved 14 April 2021)

Pierre L’Ecuyer and Richard Simard. 2007. TestU01: A C Library for Empirical Testing of Random Number Generators. ACM

Trans. Math. Software 33, 4 (Aug.), Article 22, 40 pages. https://doi.org/10.1145/1268776.1268777

Pierre L’Ecuyer and Richard Simard. 2013. TestU01: A Software Library in ANSI C for Empirical Testing of Random Number

Generators: User’s guide, compact version. 16 May 2013. http://simul.iro.umontreal.ca/testu01/guideshorttestu01.pdf

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

https://github.com/tommyettinger/sarong/blob/master/src/main/java/sarong/PelicanRNG.java
https://github.com/tommyettinger/sarong/blob/master/src/main/java/sarong/PelicanRNG.java
https://web.archive.org/web/20210414031013/https://github.com/tommyettinger/sarong/blob/master/src/main/java/sarong/PelicanRNG.java
http://mostlymangling.blogspot.com/2018/07/on-mixing-functions-in-fast-splittable.html
http://mostlymangling.blogspot.com/2018/07/on-mixing-functions-in-fast-splittable.html
https://web.archive.org/web/20210118162629/http://mostlymangling.blogspot.com/2018/07/on-mixing-functions-in-fast-splittable.html
http://mostlymangling.blogspot.com/2019/01/better-stronger-mixer-and-test-procedure.html
http://mostlymangling.blogspot.com/2019/01/better-stronger-mixer-and-test-procedure.html
https://web.archive.org/web/20201201061000/http://mostlymangling.blogspot.com/2019/01/better-stronger-mixer-and-test-procedure.html
http://mostlymangling.blogspot.com/2020/01/nasam-not-another-strange-acronym-mixer.html
http://mostlymangling.blogspot.com/2020/01/nasam-not-another-strange-acronym-mixer.html
https://web.archive.org/web/20210207123345/http://mostlymangling.blogspot.com/2020/01/nasam-not-another-strange-acronym-mixer.html
https://babel.hathitrust.org/cgi/pt?id=osu.32435030295547
https://doi.org/10.1142/9361
https://babel.hathitrust.org/cgi/pt?id=osu.32435030295547
https://babel.hathitrust.org/cgi/pt?id=osu.32435030295547
https://doi.org/10.1287/opre.47.1.159
https://doi.org/10.1090/S0025-5718-99-00996-5
https://doi.org/10.1109/WSC.2017.8247790
https://hal.inria.fr/hal-01561551
https://doi.org/10.1016/S0378-4754(02)00234-3
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/linnlin.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/linnlin.pdf
https://www.researchgate.net/publication/222418141
https://doi.org/10.1007/b110059_9
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.483.8737&rep=rep1&type=pdf
https://www.researchgate.net/profile/Pierre-Lecuyer/publication/225226425_F2-Linear_Random_Number_Generators/links/09e415108471274e7f000000/F2-Linear-Random-Number-Generators.pdf
https://www.researchgate.net/profile/Pierre-Lecuyer/publication/225226425_F2-Linear_Random_Number_Generators/links/09e415108471274e7f000000/F2-Linear-Random-Number-Generators.pdf
https://doi.org/10.1145/1268776.1268777
http://simul.iro.umontreal.ca/testu01/guideshorttestu01.pdf

148:30 Guy L. Steele Jr. and Sebastiano Vigna

(also at Internet Archive 17 Feb. 2021 14:37:38).

D. H. Lehmer. 1951. Mathematical Methods in Large-Scale Computing Units. In Proceedings of a Second Symposium on

Large-Scale Digital Calculating Machinery: Jointly Sponsored by The Navy Department Bureauof Ordnance and Harvard

Universtiry at The Computation Laboratory, 13ś16 September 1949. The Annals of the Computation Laboratory of Harvard

University, Vol. XXVI. Harvard University Press, Cambridge, Massachusetts, USA, 141ś146. http://www.bitsavers.org/

pdf/harvard/Proceedings_of_a_Second_Symposium_on_Large-Scale_Digital_Calculating_Machinery_Sep49.pdf (entire

proceedings; also at Internet Archive 5 May 2010 13:13:16).

Charles E. Leiserson, Tao B. Schardl, and Jim Sukha. 2012. Deterministic Parallel Random-Number Generation for Dynamic-

Multithreading Platforms. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (New Orleans, Louisiana, USA) (PPoPP ’12). Association for Computing Machinery, New York, New York,

USA, 193ś204. ISBN 9781450311601. https://doi.org/10.1145/2145816.2145841

Alex Losego. 2016. Super Mario WorldÐRandom Number Generation (video). YouTube. 5 Oct. 2016. Duration 14:04.

https://youtu.be/q15yNrJHOak

Presents pseudocode and reverse-engineered assembly code for the PRNG used in the well-known Nintendo game

Super Mario World. Also documents all the ways the PRNG is used in the game, from choosing awards for player

achievements to making torches in dungeon scenes flicker.

How does random number generation work in Super Mario World? It’s all explained right here.

M. Donald MacLaren and George Marsaglia. 1965. Uniform Random Number Generators. J. ACM 12, 1 (Jan.), 83ś89.

https://doi.org/10.1145/321250.321257

George Marsaglia. 1968. Random Numbers Fall Mainly in the Planes. Proceedings of the National Academy of Sciences of the

United States of America 61, 1, 25ś28. https://doi.org/10.1073/pnas.61.1.25

George Marsaglia. 1985. A Current View Of Random Number Generators. In Computer Science and Statistics: Proceedings

of the 16th Symposium on the Interface (Atlanta, Georgia, USA), Lynne Billard (Ed.). North-Holland/Elsevier Science

Publishers BV, Amsterdam, The Netherlands, 3ś10. ISBN 978-0444877253. Alternate version at http://www.evensen.org/

marsaglia/keynote.ps (also at Internet Archive 19 July 2004 06:39:43). Keynote address.

George Marsaglia. 1995. The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness

(website). Archived at https://web.archive.org/web/20010515072724/http://www.stat.fsu.edu/pub/diehard/ Contents of a

CD-ROM published in 1995.

George Marsaglia. 2003. Xorshift RNGs. Journal of Statistical Software 8, 14, 1ś6. https://doi.org/10.18637/jss.v008.i14

George Marsaglia and Wai Wan Tsang. 2002. Some Difficult-to-Pass Tests of Randomness. Journal of Statistical Software 7,

3, 1ś9. https://doi.org/10.18637/jss.v007.i03

George Marsaglia and Arif Zaman. 1993. The KISS Generator. Technical Report. Florida State University, Tallahassee, Florida,

USA.

Bret Mulvey. 2016. Hash Functions (blog post). 2016. https://papa.bretmulvey.com/post/124027987928/hash-functions (also

at Internet Archive 7 Nov. 2020 22:32:40).

Contains a list of reversible operations on bit vectors that are easily implemented in a few machine instructions, plus

a discussion of how to compute first-order avalanche statistics.

Nintendo. 1990. Super Mario World (video game for Super Nintendo Entertainment System). 21 Nov. 1990. Sold in the form

of a proprietary cartridge.

Oracle. 2014. Interface Spliterator<T>. https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html (also at

Internet Archive 29 March 2014 01:54:31). Documentation for JavaTM Platform Standard Ed. 8.

Oracle Corporation. 2014a. Java Platform Standard Edition 8 Documentation: Class Random (online documentation).

https://docs.oracle.com/javase/8/docs/api/java/util/Random.html (also at Internet Archive 31 March 2014 01:25:08).

Oracle Corporation. 2014b. Java Platform Standard Edition 8 Documentation: Class SplittableRandom (online documentation).

https://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html (also at Internet Archive 30 March 2014

23:59:53).

Gregory G. Rose. 2018. KISS: A Bit Too Simple. Cryptography and Communications 10, 123ś137. https://doi.org/10.1007/

s12095-017-0225-x Includes the original code for Marsaglia and Zaman’s KISS generator.

A. Rotenberg. 1960. A New Pseudo-Random Number Generator. J. ACM 7, 1 (Jan.), 75ś77. https://doi.org/10.1145/321008.

321019

Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh, Mark Levenson, Mark Vangel, David

Banks, Alan Heckert, James Dray, and San Vo. 2001. A Statistical Test Suite for Random and Pseudorandom Number

Generators for Cryptographic Applications. Technical Report NIST Special Publication 800-22. Booz Allen and Hamilton

Inc., McLean, Virginia, USA. https://apps.dtic.mil/sti/pdfs/ADA393366.pdf (also at Internet Archive 13 Aug. 2021 01:48:31).

With revisions dated May 15, 2001.

Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh, Mark Levenson, Mark Vangel, David

Banks, Alan Heckert, James Dray, San Vo, and Lawrence E. Bassham III. 2010. A Statistical Test Suite for Random and

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

https://web.archive.org/web/20210217143738/http://simul.iro.umontreal.ca/testu01/guideshorttestu01.pdf
http://www.bitsavers.org/pdf/harvard/Proceedings_of_a_Second_Symposium_on_Large-Scale_Digital_Calculating_Machinery_Sep49.pdf
http://www.bitsavers.org/pdf/harvard/Proceedings_of_a_Second_Symposium_on_Large-Scale_Digital_Calculating_Machinery_Sep49.pdf
https://web.archive.org/web/20100505131316/http://www.bitsavers.org/pdf/harvard/Proceedings_of_a_Second_Symposium_on_Large-Scale_Digital_Calculating_Machinery_Sep49.pdf
https://doi.org/10.1145/2145816.2145841
https://youtu.be/q15yNrJHOak
https://doi.org/10.1145/321250.321257
https://doi.org/10.1073/pnas.61.1.25
http://www.evensen.org/marsaglia/keynote.ps
http://www.evensen.org/marsaglia/keynote.ps
https://web.archive.org/web/20040719063943/http://www.evensen.org/marsaglia/keynote.ps
https://web.archive.org/web/20010515072724/http://www.stat.fsu.edu/pub/diehard/
https://doi.org/10.18637/jss.v008.i14
https://doi.org/10.18637/jss.v007.i03
https://papa.bretmulvey.com/post/124027987928/hash-functions
https://web.archive.org/web/20201107223240/https://papa.bretmulvey.com/post/124027987928/hash-functions
https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html
https://web.archive.org/web/20140329015431/https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://web.archive.org/web/20140331012508/http://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html
https://web.archive.org/web/20140330235953/https://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html
https://web.archive.org/web/20140330235953/https://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html
https://doi.org/10.1007/s12095-017-0225-x
https://doi.org/10.1007/s12095-017-0225-x
https://doi.org/10.1145/321008.321019
https://doi.org/10.1145/321008.321019
https://apps.dtic.mil/sti/pdfs/ADA393366.pdf
https://web.archive.org/web/20210813014831/https://apps.dtic.mil/sti/pdfs/ADA393366.pdf

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 148:31

Pseudorandom Number Generators for Cryptographic Applications. Technical Report NIST Special Publication 800-22,

Revision 1a. National Institute of Standards and Technology, United States Department of Commerce, Gaithersburg,

Maryland, USA (April). 131 pages. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

(also at Internet Archive 26 June 2016 11:16:52).

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. 2011. Parallel Random Numbers: As Easy as 1, 2, 3. In

Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (Seattle,

Washington, USA) (SC ’11). Association for Computing Machinery, New York, New York, USA, Article 16, 12 pages. ISBN

9781450307710. https://doi.org/10.1145/2063384.2063405

Hans Georg Schaathun. 2015. Evaluation of splittable pseudo-random generators. Journal of Functional Programming 25

(17 June), Article e6, 19 pages. https://doi.org/10.1017/S095679681500012X Preprint at http://www.hg.schaathun.net/

research/Papers/hgs2015jfp.pdf

Richard Simard. 2009. TestU01 version 1.2.3 (website). Aug. 2009. http://simul.iro.umontreal.ca/testu01/tu01.html (also at

Internet Archive 12 Nov. 2020 00:20:45).

Guy Steele and Sebastiano Vigna. 2021. Computationally Easy, Spectrally Good Multipliers for Congruential Pseudorandom

Number Generators. 22 Jan. 2021. 23 pages. https://arxiv.org/abs/2001.05304 Revised version to appear in Software:

Practice and Experience. https://doi.org/10.1002/spe.3030

Guy L. Steele Jr., Doug Lea, and Christine H. Flood. 2014. Fast Splittable Pseudorandom Number Generators. In OOPSLA

’14: Proceedings of the 2014 ACM International Conference on Object-oriented Programming, Systems, Languages, and

Applications (Portland, Oregon, USA) (OOPSLA ’14). ACM, New York, New York, USA, 453ś472. ISBN 9781450325851.

https://doi.org/10.1145/2660193.2660195

W. E. Thomson. 1958. A Modified Congruence Method of Generating Pseudo-random Numbers. Comput. J. 1, 2, 83, 86. https:

//doi.org/10.1093/comjnl/1.2.83 second page (page 86) is at the end of another article: https://doi.org/10.1093/comjnl/1.2.84

Sebastiano Vigna. 2014ś2021. xoshiro / xoroshiro generators and the PRNG shootout (website). 2014ś2021. https:

//prng.di.unimi.it/ (also at Internet Archive 6 April 2021 18:02:55).

This page describes some new pseudorandom number generators (PRNGs) that David Blackman and Sebastiano

Vigna have been working on recently, and a shootout comparing them with other generators.

John von Neumann. 1951. Various Techniques Used in Connection with Random Digits. In Monte Carlo Method, A. S.

Householder, G. E. Forsythe, and H. H. Germond (Eds.). National Bureau of Standards Applied Mathematics Series, Vol. 12.

United States Government Printing Office, Washington, DC, USA (11 June), Chapter 13, 36ś38. https://dornsifecms.

usc.edu/assets/sites/520/docs/VonNeumann-ams12p36-38.pdf (also at Internet Archive 10 Sept. 2014 21:29:50). See also

https://babel.hathitrust.org/cgi/pt?id=osu.32435030295547 (entire proceedings). Proceedings of a symposium held June

29, 30, and July 1, 1949, in Los Angeles, California, under the sponsorship of the RAND Corporation, and the National

Bureau of Standards, with the cooperation of the Oak Ridge National Laboratory.

John Walker. 1996. HotBits: Genuine random numbers, generated by radioactive decay (data server). May 1996. http:

//www.fourmilab.ch/hotbits/ (also at Internet Archive 1 March 2021 15:29:15).

HotBits is an Internet resource that brings genuine random numbers, generated by a process fundamentally governed

by the inherent uncertainty in the quantum mechanical laws of nature, directly to your computer in a variety of

forms.

Tony T. Warnock. 1983. Synchronization of random number generators. Congressus numerantium 37, 135ś144.

Henry S. Warren, Jr. 2012. Hacker’s Delight. Pearson Education, Boston, Massachusetts, USA. ISBN 9780133085013.

Chris Wellons. 2018. Prospecting for Hash Functions (blog post). 31 July 2018. https://nullprogram.com/blog/2018/07/31/

(also at Internet Archive 25 Nov. 2020 19:01:27).

Description of software that searches for better mixing functions, using Bret Mulvey’s list of invertible operations as

primitive building blocks.

Christopher Wellons. 2019. Hash Function Prospector (GitHub project). March 2019. https://github.com/skeeto/hash-

prospector (also at Internet Archive 12 Nov. 2020 01:46:36).

Software that searches for good mixing functions.

Stephen Wolfram. 2016. Solomon Golomb (1932ś2016) (blog post). 25 May 2016. https://writings.stephenwolfram.com/

2016/05/solomon-golomb-19322016/ (also at Internet Archive 26 Oct. 2019 12:39:30).

Read the specifications for 3G, LTE, Wi-Fi, Bluetooth, or for that matter GPS, and you’ll find mentions of polynomials

that determine the shift register sequences these systems use to encode the data they send. Solomon Golomb is the

person who figured out how to construct all these polynomials.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 148. Publication date: October 2021.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://web.archive.org/web/20160626111652/http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://doi.org/10.1145/2063384.2063405
https://doi.org/10.1017/S095679681500012X
http://www.hg.schaathun.net/research/Papers/hgs2015jfp.pdf
http://www.hg.schaathun.net/research/Papers/hgs2015jfp.pdf
http://simul.iro.umontreal.ca/testu01/tu01.html
https://web.archive.org/web/20201112002045/http://simul.iro.umontreal.ca/testu01/tu01.html
https://arxiv.org/abs/2001.05304
https://doi.org/10.1002/spe.3030
https://doi.org/10.1145/2660193.2660195
https://doi.org/10.1093/comjnl/1.2.83
https://doi.org/10.1093/comjnl/1.2.83
https://doi.org/10.1093/comjnl/1.2.84
https://prng.di.unimi.it/
https://prng.di.unimi.it/
https://web.archive.org/web/20210406180255/https://prng.di.unimi.it/
https://dornsifecms.usc.edu/assets/sites/520/docs/VonNeumann-ams12p36-38.pdf
https://dornsifecms.usc.edu/assets/sites/520/docs/VonNeumann-ams12p36-38.pdf
https://web.archive.org/web/20140910212950/https://dornsifecms.usc.edu/assets/sites/520/docs/VonNeumann-ams12p36-38.pdf
https://babel.hathitrust.org/cgi/pt?id=osu.32435030295547
http://www.fourmilab.ch/hotbits/
http://www.fourmilab.ch/hotbits/
https://web.archive.org/web/20210301152915/http://www.fourmilab.ch/hotbits/
https://nullprogram.com/blog/2018/07/31/
https://web.archive.org/web/20201125190127/https://nullprogram.com/blog/2018/07/31/
https://github.com/skeeto/hash-prospector
https://github.com/skeeto/hash-prospector
https://web.archive.org/web/20201112014636/https://github.com/skeeto/hash-prospector
https://writings.stephenwolfram.com/2016/05/solomon-golomb-19322016/
https://writings.stephenwolfram.com/2016/05/solomon-golomb-19322016/
https://web.archive.org/web/20191026123930/https://writings.stephenwolfram.com/2016/05/solomon-golomb-19322016/

	Abstract
	1 Introduction
	2 The LXM Generation Algorithm
	3 LXM Implementation of Splitting
	3.1 The Split Operation
	3.2 The Splits Operation

	4 Notation and Terminology
	5 Theoretical Construction of the LXM Algorithm
	6 Properties of the LXM Algorithm
	6.1 Period
	6.2 Scalability of Period
	6.3 Probability of Overlapping Sequences
	6.4 Equidistribution
	6.5 Why We Need a Nontrivial Mixing Function

	7 Testing
	7.1 Test Framework
	7.2 Results of BigCrush Tests
	7.3 Results of PractRand Tests

	8 Comparative Timing Tests
	9 More about Jumping and Splitting
	10 Choosing an LXM Algorithm
	11 Related Work
	12 Conclusions and Future Work
	Acknowledgments
	References

